Background: Macrophage-based cell therapies have shown modest success in clinical trials, which can be attributed to their phenotypic plasticity, where transplanted macrophages get reprogrammed towards a pro-tumor phenotype. In most tumor types, including melanoma, the balance between antitumor M1-like and tumor-promoting M2-like macrophages is critical in defining the local immune response with a higher M1/M2 ratio favoring antitumor immunity. Therefore, designing novel strategies to increase the M1/M2 ratio in the TME has high clinical significance and benefits macrophage-based cell therapies.
View Article and Find Full Text PDFA 67-year-old female came to Tampa General Hospital with Philadelphia chromosome-positive (Ph+) acute myeloid leukemia (AML) featuring an intriguing combination of mutations, including and mutations. Novel combination therapy with azacitidine, venetoclax and ponatinib allowed her to successfully achieve a complete response (CR) and undergo an allogeneic hematopoietic stem cell transplant (HSCT). This case report provides an overview of her clinical course, emphasizing the significance of integrated therapy and the challenges associated with balancing treatment for AML.
View Article and Find Full Text PDFWorld Health Organization findings indicate that the COVID-19 pandemic adversely affected cancer diagnosis and management. The COVID-19 pandemic disrupted the optimal management of outpatient appointments, scheduled treatments, and hospitalizations for cancer patients because of hesitancy among patients and health-care providers. Travel restrictions and other factors likely affected medical, surgical, and radiation treatments during the COVID-19 pandemic.
View Article and Find Full Text PDFThe clinical utility of histone/protein deacetylase (HDAC) inhibitors in combinatorial regimens with proteasome inhibitors for patients with relapsed and refractory multiple myeloma (MM) is often limited by excessive toxicity due to HDAC inhibitor promiscuity with multiple HDACs. Therefore, more selective inhibition minimizing off-target toxicity may increase the clinical effectiveness of HDAC inhibitors. We demonstrated that plasma cell development and survival are dependent upon HDAC11, suggesting this enzyme is a promising therapeutic target in MM.
View Article and Find Full Text PDFDespite significant progress in the treatment of patients with diffuse large B-cell lymphoma (DLBCL) and mantle cell lymphoma (MCL), the prognosis of patients with relapsed disease remains poor due to the emergence of drug resistance and subsequent disease progression. Identification of novel targets and therapeutic strategies for these diseases represents an urgent need. Here, we report that both MCL and DLBCL are exquisitely sensitive to transcription-targeting drugs, in particular THZ531, a covalent inhibitor of cyclin-dependent kinase 12 (CDK12).
View Article and Find Full Text PDFMyeloid-derived suppressor cells (MDSCs) constitute a heterogeneous population of immature myeloid cells derived from bone marrow and negatively regulate both innate and adaptive immunity in the tumor microenvironment. Previously we have demonstrated that MDSCs lacking histone deacetylase 11 (HDAC11) displayed an increased suppressive activity against CD8 T-cells. However, the mechanisms of HDAC11 that contribute to the suppressive function of MDSCs remain unclear.
View Article and Find Full Text PDFIbrutinib, a bruton's tyrosine kinase (BTK) inhibitor, provokes robust clinical responses in aggressive mantle cell lymphoma (MCL), yet many patients relapse with lethal Ibrutinib-resistant (IR) disease. Here, using genomic, chemical proteomic, and drug screen profiling, we report that enhancer remodeling-mediated transcriptional activation and adaptive signaling changes drive the aggressive phenotypes of IR. Accordingly, IR MCL cells are vulnerable to inhibitors of the transcriptional machinery and especially so to inhibitors of cyclin-dependent kinase 9 (CDK9), the catalytic subunit of the positive transcription elongation factor b (P-TEFb) of RNA polymerase II (RNAPII).
View Article and Find Full Text PDFImmune cells of the monocyte/macrophage lineage are characterized by their diversity, plasticity, and variety of functions. Among them, macrophages play a central role in antiviral responses, tissue repair, and fibrosis. Macrophages can be reprogrammed by environmental cues, thus changing their phenotype during an antiviral immune response as the viral infection progresses.
View Article and Find Full Text PDFCancer is first a localized tissue disorder, whose soluble and exosomal molecules and invasive cells induce a host response providing the stromal components of the primary tumor microenvironment (TME). Once the TME is developed, cancer-derived molecules and cells can more efficiently spread out and a whole-body response takes place, whose pathophysiological changes may result in a paraneoplastic syndrome. Remote organ-specific prometastatic reactions may also occur at this time, facilitating metastatic activities of circulating tumor cells (CTCs) through premetastatic niche development at targeted organs.
View Article and Find Full Text PDFDespite the outstanding clinical results of immune checkpoint blockade (ICB) in melanoma and other cancers, clinical trials in breast cancer have reported low responses to these therapies. Current efforts are now focused on improving the treatment efficacy of ICB in breast cancer using new combination designs such as molecularly targeted agents, including histone deacetylase inhibitors (HDACi). These epigenetic drugs have been widely described as potent cytotoxic agents for cancer cells.
View Article and Find Full Text PDFIntroduction: We aimed at investigating the prognostic role of the neutrophil-to-lymphocyte ratio (NLR) in 2 independent cohorts of Latin American patients with diffuse large B-cell lymphoma (DLBCL) treated with chemoimmunotherapy.
Patients And Methods: The learning cohort was composed of 274 patients and the validation cohort of 323 patients, for a total of 597 patients. An optimal NLR cutoff ≥ 4 was determined using receiver operating characteristic analysis.
Clinical and preclinical studies show tissue-specific differences in tumorigenesis. Tissue specificity is controlled by differential gene expression. We prioritized genes that encode secreted proteins according to their preferential expression in normal lungs to identify candidates associated with lung cancer.
View Article and Find Full Text PDFProtein acetylation is an important contributor to cancer initiation. Histone deacetylase 6 (HDAC6) controls JAK2 translation and protein stability and has been implicated in JAK2-driven diseases best exemplified by myeloproliferative neoplasms (MPNs). By using novel classes of highly selective HDAC inhibitors and genetically deficient mouse models, we discovered that HDAC11 rather than HDAC6 is necessary for the proliferation and survival of oncogenic JAK2-driven MPN cells and patient samples.
View Article and Find Full Text PDFDouble/triple-hit lymphomas (DHL/THL) account for 5-10% of diffuse large B cell lymphoma (DLBCL) with rearrangement of MYC and BCL2 and/or BCL6 resulting in MYC overexpression. Despite the poor prognosis of DHL, R-CHOP chemotherapy remains the treatment backbone and new targeted therapy is needed. We performed comprehensive cytogenetic studies/fluorescence in situ hybridization on DLBCL and Burkitt lymphoma cell lines (n = 11) to identify the DHL/THL DLBCL in vitro model.
View Article and Find Full Text PDFDrug-tolerant "persister" tumor cells underlie emergence of drug-resistant clones and contribute to relapse and disease progression. Here we report that resistance to the BCL-2 targeting drug ABT-199 in models of mantle cell lymphoma and double-hit lymphoma evolves from outgrowth of persister clones displaying loss of 18q21 amplicons that harbor BCL2. Further, persister status is generated via adaptive super-enhancer remodeling that reprograms transcription and offers opportunities for overcoming ABT-199 resistance.
View Article and Find Full Text PDFMantle cell lymphoma (MCL) is an aggressive B-cell non-Hodgkin lymphoma characterized by the t(11;14) chromosomal translocation. This translocation most often results in overexpression of cyclin D1. MCL is clinically heterogeneous, outcomes are generally poor, and no standard treatment has been established.
View Article and Find Full Text PDFMultiple sclerosis (MS) is a chronic, immune-mediated, demyelinating disease of the central nervous system (CNS). There is no known cure for MS, and currently available drugs for managing this disease are only effective early on and have many adverse side effects. Results from recent studies suggest that histone deacetylase (HDAC) inhibitors may be useful for the treatment of autoimmune and inflammatory diseases such as MS.
View Article and Find Full Text PDFAlthough the treatment paradigm for chronic lymphocytic leukemia (CLL) is rapidly changing, the disease remains incurable, except with allogeneic bone marrow transplantation, and resistance, relapsed disease, and partial responses persist as significant challenges. Recent studies have uncovered roles for epigenetic modification in the regulation of mechanisms contributing to malignant progression of CLL B cells. However, the extent to which epigenetic modifiers can be targeted for therapeutic benefit in CLL patients remains poorly explored.
View Article and Find Full Text PDFConcordant activation of MYC and BCL-2 oncoproteins in double-hit lymphoma (DHL) results in aggressive disease that is refractory to treatment. By integrating activity-based proteomic profiling and drug screens, polo-like kinase-1 (PLK1) was identified as an essential regulator of the MYC-dependent kinome in DHL. Notably, PLK1 was expressed at high levels in DHL, correlated with MYC expression, and connoted poor outcome.
View Article and Find Full Text PDF