Gathering sufficient instance data to either train algorithm-selection models or understand algorithm footprints within an instance space can be challenging. We propose an approach to generating synthetic instances that are tailored to perform well with respect to a target algorithm belonging to a predefined portfolio but are also diverse with respect to their features. Our approach uses a novelty search algorithm with a linearly weighted fitness function that balances novelty and performance to generate a large set of diverse and discriminatory instances in a single run of the algorithm.
View Article and Find Full Text PDFPremature convergence is one of the best-known drawbacks that affects the performance of evolutionary algorithms. An alternative for dealing with this problem is to explicitly try to maintain proper diversity. In this paper, a new replacement strategy that preserves useful diversity is presented.
View Article and Find Full Text PDF