Int J Environ Res Public Health
December 2019
Ethylene oxide (EtO) is a known carcinogen and mutagen associated with increased incidence of breast and blood cancers. The largest medical sterilization facility in Michigan had been assessed by the U.S.
View Article and Find Full Text PDFJ Air Waste Manag Assoc
August 2016
Unlabelled: The electric system is experiencing rapid growth in the adoption of a mix of distributed renewable and fossil fuel sources, along with increasing amounts of off-grid generation. New operational regimes may have unforeseen consequences for air quality. A three-dimensional microscale chemical transport model (CTM) driven by an urban wind model was used to assess gaseous air pollutant and particulate matter (PM) impacts within ~10 km of fossil-fueled distributed power generation (DG) facilities during the early afternoon of a typical summer day in Houston, TX.
View Article and Find Full Text PDFEnviron Health Insights
November 2015
The Benzene and other Toxics Exposure (BEE-TEX) field study was an experimental campaign designed to demonstrate novel methods for measuring ambient concentrations of hazardous air pollutants (HAPs) in real time and to attribute these concentrations to quantified releases from specific emission points in industrial facilities while operating outside facility fence lines. BEE-TEX was conducted in February 2015 at three neighboring communities in the Houston Ship Channel of Texas, where a large number of petrochemical facilities are concentrated. The novel technologies deployed during BEE-TEX included: (1) tomographic remote sensing based on differential optical absorption spectroscopy; (2) real-time broadcasting of ambient air monitoring data over the World Wide Web; (3) real-time source attribution and quantification of HAP emissions based on either tomographic or mobile measurement platforms; and (4) the use of cultured human lung cells in vitro as portable indicators of HAP exposure.
View Article and Find Full Text PDFUnlabelled: An explosive growth in natural gas production within the last decade has fueled concern over the public health impacts of air pollutant emissions from oil and gas sites in the Barnett and Eagle Ford shale regions of Texas. Commonly acknowledged sources of uncertainty are the lack of sustained monitoring of ambient concentrations of pollutants associated with gas mining, poor quantification of their emissions, and inability to correlate health symptoms with specific emission events. These uncertainties are best addressed not by conventional monitoring and modeling technology, but by increasingly available advanced techniques for real-time mobile monitoring, microscale modeling and source attribution, and real-time broadcasting of air quality and human health data over the World Wide Web.
View Article and Find Full Text PDFUnlabelled: A mobile laboratory equipped with a proton transfer reaction mass spectrometer (PTR-MS) operated in Galena Park, Texas, near the Houston Ship Channel during the Benzene and other Toxics Exposure Study (BEE-TEX). The mobile laboratory measured transient peaks of benzene of up to 37 ppbv in the afternoon and evening of February 19, 2015. Plume reconstruction and source attribution were performed using the four-dimensional (4D) variational data assimilation technique and a three-dimensional (3D) micro-scale forward and adjoint air quality model based on mobile PTR-MS data and nearby stationary wind measurements at the Galena Park Continuous Air Monitoring Station (CAMS).
View Article and Find Full Text PDFLarge petrochemicalflares, common in the Houston Ship Channel (the Ship Channel) and other industrialized areas in the Gulfof Mexico region, emit hundreds to thousands of pounds per hour of highly reactive volatile organic compounds (HRVOCs). We employedfine horizontal resolution (200 mx200 m) in a three-dimensional (3D) Eulerian chemical transport model to simulate two historical Ship Channel flares. The model reasonably reproduced the observed ozone rise at the nearest monitoring stations downwind of the flares.
View Article and Find Full Text PDFJ Air Waste Manag Assoc
August 2012
Increased drilling in urban areas overlying shale formations and its potential impact on human health through decreased air quality make it important to estimate the contribution of oil and gas activities to photochemical smog. Flares and compressor engines used in natural gas operations, for example, are large sources not only of NOx but also offormaldehyde, a hazardous air pollutant and powerful ozone precursor We used a neighborhood scale (200 m horizontal resolution) three-dimensional (3D) air dispersion model with an appropriate chemical mechanism to simulate ozone formation in the vicinity ofa hypothetical natural gas processing facility, based on accepted estimates of both regular and nonroutine emissions. The model predicts that, under average midday conditions in June, regular emissions mostly associated with compressor engines may increase ambient ozone in the Barnett Shale by more than 3 ppb beginning at about 2 km downwind of the facility, assuming there are no other major sources of ozone precursors.
View Article and Find Full Text PDFTo comply with the federal 8-hr ozone standard, the state of Texas is creating a plan for Houston that strictly follows the U.S. Environmental Protection Agency's (EPA) guidance for demonstrating attainment.
View Article and Find Full Text PDFJ Air Waste Manag Assoc
November 2009
The Texas Environmental Research Consortium (TERC) funded significant components of the Second Texas Air Quality Study (TexAQS II), including the TexAQS II Radical and Aerosol Measurement Project (TRAMP) and instrumented flights by a Piper Aztec aircraft. These experiments called attention to the role of short-lived radical sources such as formaldehyde (HCHO) and nitrous acid (HONO) in increasing ozone productivity. TRAMP instruments recorded daytime HCHO pulses as large as 32 parts per billion (ppb) originating from upwind industrial activities in the Houston Ship Channel, where in situ surface monitors detected HCHO peaks as large as 52 ppb.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
July 2002
Dichloromethane, perchloroethylene, and trichloroethylene are commercially important chlorinated solvents whose health and environmental impacts are under scrutiny in the industrial world. Their distributions in the global atmosphere have been computed based on data from the Reactive Chlorine Emissions Inventory (RCEI) project using the Global Balance Environment (GLOBE) model, a 3-D radiative-dynamical-chemical model. Their atmospheric lifetimes, scaled to an observed methyl chloroform lifetime of 4.
View Article and Find Full Text PDF