Introduction And Objectives: Three-dimensional (3D) model simulation provides the opportunity to manipulate real devices and learn intervention skills in a realistic, controlled, and safe environment. To ensure that simulators provide a realistic surrogate to real procedures they must undergo scientific validation. We aimed to evaluate the 3D-printed simulator SimulHeart® for face and content validity to demonstrate its value as a training tool in interventional cardiology (IC).
View Article and Find Full Text PDFThree-dimensional (3D) printing technology is emerging as a potential new tool for the planning of medical interventions. In the last few years, increasing data have accumulated on its ability to guide interventional cardiology procedures, going beyond initial reports in congenital heart disease settings. In fact, there is compelling evidence on the advantages of a 3D-printed guided strategy for left atrial appendage closure, suggesting a high success rate with optimal device selection and lower radiation load.
View Article and Find Full Text PDFRev Port Cardiol (Engl Ed)
June 2018
The field of three-dimensional printing applied to patient-specific simulation is evolving as a tool to enhance intervention results. We report the first case of a fully simulated percutaneous coronary intervention in a three-dimensional patient-specific model to guide treatment. An 85-year-old female presented with symptomatic in-stent restenosis in the ostial circumflex and was scheduled for percutaneous coronary intervention.
View Article and Find Full Text PDF