Publications by authors named "Eduardo Nunes Chini"

Article Synopsis
  • Recent advancements in aging research and drug discovery connect basic research with clinical applications, aiming to promote healthy longevity in humans.* -
  • The Aging Research and Drug Discovery Meeting in 2023 highlighted key areas such as AI, biomarkers, geroscience, and clinical trials focused on enhancing healthspan.* -
  • The meeting emphasized the importance of combining generative AI with innovative biological technologies to tackle age-related diseases and extend healthy lifespans.*
View Article and Find Full Text PDF

Aims: Doxorubicin (DXR) is a chemotherapeutic agent that causes dose-dependent cardiotoxicity. Recently, it has been proposed that the NADase CD38 may play a role in doxorubicin-induced cardiotoxicity (DIC). CD38 is the main NAD+-catabolizing enzyme in mammalian tissues.

View Article and Find Full Text PDF

The geroscience hypothesis proposes that addressing the biology of aging could directly prevent the onset or mitigate the severity of multiple chronic diseases. Understanding the interplay between key aspects of the biological hallmarks of aging is essential in delivering the promises of the geroscience hypothesis. Notably, the nucleotide nicotinamide adenine dinucleotide (NAD) interfaces with several biological hallmarks of aging, including cellular senescence, and changes in NAD metabolism have been shown to be involved in the aging process.

View Article and Find Full Text PDF

In mammals, nicotinamide (NAM) is the primary NAD precursor available in circulation, a signaling molecule, and a precursor for methyl-nicotinamide (M-NAM) synthesis. However, our knowledge about how the body regulates tissue NAM levels is still limited. Here we demonstrate that dietary vitamin B partially regulates plasma NAM and NAM-derived metabolites, but not their tissue levels.

View Article and Find Full Text PDF

Nicotinamide adenine dinucleotide (NAD) acts as a cofactor in several oxidation-reduction (redox) reactions and is a substrate for a number of nonredox enzymes. NAD is fundamental to a variety of cellular processes including energy metabolism, cell signaling, and epigenetics. NAD homeostasis appears to be of paramount importance to health span and longevity, and its dysregulation is associated with multiple diseases.

View Article and Find Full Text PDF

During the COVID-19 pandemic, efforts have been made worldwide to develop effective therapies to address the devastating immune-mediated effects of SARS-CoV-2. With the exception of monoclonal antibody-mediated therapeutics and preventive approaches such as mass immunization, most experimental or repurposed drugs have failed in large randomized clinical trials (https://www.who.

View Article and Find Full Text PDF

NAD(H) and NADP(H) have traditionally been viewed as co-factors (or co-enzymes) involved in a myriad of oxidation-reduction reactions including the electron transport in the mitochondria. However, NAD pathway metabolites have many other important functions, including roles in signaling pathways, post-translational modifications, epigenetic changes, and regulation of RNA stability and function via NAD-capping of RNA. Non-oxidative reactions ultimately lead to the net catabolism of these nucleotides, indicating that NAD metabolism is an extremely dynamic process.

View Article and Find Full Text PDF

Purpose Of Review: Here we review recent literature on the emerging role of nicotinamide adenine dinucleotide (NAD) metabolism and its dysfunction via the enzyme CD38 in the pathogenesis of rheumatologic diseases. We evaluate the potential of targeting CD38 to ameliorate NAD-related metabolic imbalance and tissue dysfunction in the treatment of systemic sclerosis (SSc), systemic lupus erythematous (SLE), and rheumatoid arthritis (RA).

Recent Findings: In this review, we will discuss emerging basic, preclinical, and human data that point to the novel role of CD38 in dysregulated NAD-homeostasis in SSc, SLE, and RA.

View Article and Find Full Text PDF

Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common genetic diseases implicated in the development of end stage renal disease (ESRD). Although FDA has recently approved a drug against ADPKD, there is still a great need for development of alternative management strategies for ADPKD. Understanding the different mechanisms that lead to cystogenesis and cyst expansion in ADPKD is imperative to develop new therapies against ADPKD.

View Article and Find Full Text PDF

In this issue of Cell Metabolism, Pirinen et al. (2020) show that disruption in NAD homeostasis is a key component of the pathogenesis of mitochondrial myopathy in humans that can be targeted by the administration of the NAD precursor niacin, identifying NAD boosting as a potential treatment for this devastating disease.

View Article and Find Full Text PDF

DBC1 (deleted in breast cancer-1) is a nuclear protein that regulates cellular metabolism. Since alteration in cellular metabolism have been proposed to be the emerging 'hallmark' of cancer, it is possible that DBC1 may be implicated in the regulation of cancer cell energy metabolism. However, at this point any role of DBC1 in cancer is only speculative.

View Article and Find Full Text PDF

The Intracellular levels of nicotinamide adenine dinucleotide (NAD(+)) are rhythmic and controlled by the circadian clock. However, whether NAD(+) oscillation in turn contributes to circadian physiology is not fully understood. To address this question we analyzed mice mutated for the NAD(+) hydrolase CD38.

View Article and Find Full Text PDF

The enzyme sirtuin 1 (SIRT1) is a critical regulator of many cellular functions, including energy metabolism. However, the precise mechanisms that modulate SIRT1 activity remain unknown. As SIRT1 activity in vitro was recently found to be negatively regulated by interaction with the deleted in breast cancer-1 (DBC1) protein, we set out to investigate whether DBC1 regulates SIRT1 activity in vivo.

View Article and Find Full Text PDF

CD38 is a multifunctional enzyme that uses nicotinamide adenine dinucleotide (NAD) as a substrate to generate second messengers. Recently, CD38 was also identified as one of the main cellular NADases in mammalian tissues and appears to regulate cellular levels of NAD in multiple tissues and cells. Due to the emerging role of NAD as a key molecule in multiple signaling pathways, and metabolic conditions it is imperative to determine the cellular mechanisms that regulate the synthesis and degradation of this nucleotide.

View Article and Find Full Text PDF

Obesity is one of the major health problems of our times. Elucidating the signaling mechanisms by which high-fat caloric diet induces obesity is critical for the understanding of this condition and for the development of therapeutic strategies for its treatment. Here, we demonstrate a novel role for protein CD38 as a regulator of body weight during a high-fat diet.

View Article and Find Full Text PDF

Unintentional intra-arterial injection of medication, either iatrogenic or self-administered, is a source of considerable morbidity. Normal vascular anatomical proximity, aberrant vasculature, procedurally difficult situations, and medical personnel error all contribute to unintentional cannulation of arteries in an attempt to achieve intravenous access. Delivery of certain medications via arterial access has led to clinically important sequelae, including paresthesias, severe pain, motor dysfunction, compartment syndrome, gangrene, and limb loss.

View Article and Find Full Text PDF

Nicotinic acid adenine dinucleotide phosphate (NAADP) is a potent activator of intracellular Ca2+ release in several vertebrate and invertebrate systems. The role of the NAADP system in physiological processes is being extensively investigated at the present time. The NAADP receptor and its associated Ca2+ pool have been hypothesized to be important in several physiological processes including fertilization, T cell activation, and pancreatic secretion.

View Article and Find Full Text PDF