How hematopoietic stem cells (HSCs) maintain metabolic homeostasis to support tissue repair and regeneration throughout the lifespan is elusive. Here, we show that CD38, an NAD-dependent metabolic enzyme, promotes HSC proliferation by inducing mitochondrial Ca influx and mitochondrial metabolism in young mice. Conversely, aberrant CD38 upregulation during aging is a driver of HSC deterioration in aged mice due to dysregulated NAD metabolism and compromised mitochondrial stress management.
View Article and Find Full Text PDFClassic galactosemia is an inborn error of metabolism caused by mutations in the GALT gene resulting in the diminished activity of the galactose-1-phosphate uridyltransferase enzyme. This reduced GALT activity leads to the buildup of the toxic intermediate galactose-1-phosphate and a decrease in ATP levels upon exposure to galactose. In this work, we focused our attention on mitochondrial oxidative phosphorylation in the context of this metabolic disorder.
View Article and Find Full Text PDFAims: Doxorubicin (DXR) is a chemotherapeutic agent that causes dose-dependent cardiotoxicity. Recently, it has been proposed that the NADase CD38 may play a role in doxorubicin-induced cardiotoxicity (DIC). CD38 is the main NAD+-catabolizing enzyme in mammalian tissues.
View Article and Find Full Text PDFThe functionally pleiotropic ectoenzyme CD38 is a glycohydrolase widely expressed on immune and non-hematopoietic cells. By converting NAD to ADP-ribose and nicotinamide, CD38 governs organismal NAD homeostasis and the activity of NAD-dependent cellular enzymes. CD38 has emerged as a major driver of age-related NAD decline underlying adverse metabolic states, frailty and reduced health span.
View Article and Find Full Text PDFObesity-related type II diabetes (diabesity) has increased global morbidity and mortality dramatically. Previously, the ancient drug salicylate demonstrated promise for the treatment of type II diabetes, but its clinical use was precluded due to high dose requirements. In this study, we present a nitroalkene derivative of salicylate, 5-(2-nitroethenyl)salicylic acid (SANA), a molecule with unprecedented beneficial effects in diet-induced obesity (DIO).
View Article and Find Full Text PDFThe geroscience hypothesis proposes that addressing the biology of aging could directly prevent the onset or mitigate the severity of multiple chronic diseases. Understanding the interplay between key aspects of the biological hallmarks of aging is essential in delivering the promises of the geroscience hypothesis. Notably, the nucleotide nicotinamide adenine dinucleotide (NAD) interfaces with several biological hallmarks of aging, including cellular senescence, and changes in NAD metabolism have been shown to be involved in the aging process.
View Article and Find Full Text PDFBackground: ERK5 (extracellular signal-regulated kinase 5) is a dual kinase transcription factor containing an N-terminal kinase domain and a C-terminal transcriptional activation domain. Many ERK5 kinase inhibitors have been developed and tested to treat cancer and inflammatory diseases. However, recent data have raised questions about the role of the catalytic activity of ERK5 in proliferation and inflammation.
View Article and Find Full Text PDFIntroduction: Peripheral nerve injuries have been associated with increased healthcare costs and decreased patients' quality of life. Aging represents one factor that slows the speed of peripheral nervous system (PNS) regeneration. Since cellular homeostasis imbalance associated with aging lead to an increased failure in nerve regeneration in mammals of advanced age, this systematic review aims to determine the main molecular and cellular mechanisms involved in peripheral nerve regeneration in aged murine models after a peripheral nerve injuries.
View Article and Find Full Text PDFCellular senescence contributes to tissue homeostasis and age-related pathologies. However, how senescence is initiated in stressed cells remains vague. Here, we discover that exposure to irradiation, oxidative or inflammatory stressors induces transient biogenesis of primary cilia, which are then used by stressed cells to communicate with the promyelocytic leukemia nuclear bodies (PML-NBs) to initiate senescence responses in human cells.
View Article and Find Full Text PDFBackground And Aim: Although a natural phenomenon, aging is a degenerative condition that promotes cellular malfunction and subsequent organ and body dysfunction. According to the World Health Organization, the elderly are the fastest growing age group worldwide. A 2012 population report stated that 43.
View Article and Find Full Text PDFRecent work has established associations between elevated p21, the accumulation of senescent cells, and skeletal muscle dysfunction in mice and humans. Using a mouse model of p21 overexpression (p21OE), we examined if p21 mechanistically contributes to cellular senescence and pathological features in skeletal muscle. We show that p21 induces several core properties of cellular senescence in skeletal muscle, including an altered transcriptome, DNA damage, mitochondrial dysfunction, and the senescence-associated secretory phenotype (SASP).
View Article and Find Full Text PDFIn mammals, nicotinamide (NAM) is the primary NAD precursor available in circulation, a signaling molecule, and a precursor for methyl-nicotinamide (M-NAM) synthesis. However, our knowledge about how the body regulates tissue NAM levels is still limited. Here we demonstrate that dietary vitamin B partially regulates plasma NAM and NAM-derived metabolites, but not their tissue levels.
View Article and Find Full Text PDFCluster of differentiation 38 (CD38) is an ecto-enzyme expressed primarily on immune cells that metabolize nicotinamide adenine dinucleotide (NAD+) to adenosine diphosphate ribose or cyclic ADP-ribose and nicotinamide. Other substrates of CD38 include nicotinamide adenine dinucleotide phosphate and nicotinamide mononucleotide, a critical NAD+ precursor in the salvage pathway. NAD+ is an important coenzyme involved in several metabolic pathways and is a required cofactor for the function of sirtuins (SIRTs) and poly (adenosine diphosphate-ribose) polymerases.
View Article and Find Full Text PDFAdvanced paternal age has increasingly been recognized as a risk factor for male fertility and progeny health. While underlying causes are not well understood, aging is associated with a continuous decline of blood and tissue NAD levels, as well as a decline of testicular functions. The important basic question to what extent ageing-related NAD decline is functionally linked to decreased male fertility has been difficult to address due to the pleiotropic effects of aging, and the lack of a suitable animal model in which NAD levels can be lowered experimentally in chronologically young adult males.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) is characterized by progressive muscle degeneration. Two important deleterious features are a Ca dysregulation linked to Ca influxes associated with ryanodine receptor hyperactivation, and a muscular nicotinamide adenine dinucleotide (NAD ) deficit. Here, we identified that deletion in mdx mice of CD38, a NAD glycohydrolase-producing modulators of Ca signaling, led to a fully restored heart function and structure, with skeletal muscle performance improvements, associated with a reduction in inflammation and senescence markers.
View Article and Find Full Text PDFNicotinamide adenine dinucleotide (NAD) metabolism plays an important role in the regulation of immune function. However, a complete picture of how NAD, its metabolites, precursors, and metabolizing enzymes work together in regulating immune function and inflammatory diseases is still not fully understood. Surprisingly, few studies have compared the effect of different forms of vitamin B3 on cellular functions.
View Article and Find Full Text PDFNicotinamide adenine dinucleotide (NAD) levels decline during aging, contributing to physical and metabolic dysfunction. The NADase CD38 plays a key role in age-related NAD decline. Whether the inhibition of CD38 increases lifespan is not known.
View Article and Find Full Text PDFNicotinamide adenine dinucleotide (NAD) acts as a cofactor in several oxidation-reduction (redox) reactions and is a substrate for a number of nonredox enzymes. NAD is fundamental to a variety of cellular processes including energy metabolism, cell signaling, and epigenetics. NAD homeostasis appears to be of paramount importance to health span and longevity, and its dysregulation is associated with multiple diseases.
View Article and Find Full Text PDFJ Mol Cell Cardiol
May 2022
Unlabelled: CD38 enzymatic activity regulates NAD and cADPR levels in mammalian tissues, and therefore has a prominent role in cellular metabolism and calcium homeostasis. Consequently, it is reasonable to hypothesize about its involvement in cardiovascular physiology as well as in heart related pathological conditions.
Aim: To investigate the role of CD38 in cardiovascular performance, and its involvement in cardiac electrophysiology and calcium-handling.
During the COVID-19 pandemic, efforts have been made worldwide to develop effective therapies to address the devastating immune-mediated effects of SARS-CoV-2. With the exception of monoclonal antibody-mediated therapeutics and preventive approaches such as mass immunization, most experimental or repurposed drugs have failed in large randomized clinical trials (https://www.who.
View Article and Find Full Text PDFWestern-style diets cause disruptions in myelinating cells and astrocytes within the mouse CNS. Increased CD38 expression is present in the cuprizone and experimental autoimmune encephalomyelitis models of demyelination and CD38 is the main nicotinamide adenine dinucleotide (NAD)-depleting enzyme in the CNS. Altered NAD metabolism is linked to both high fat consumption and multiple sclerosis (MS).
View Article and Find Full Text PDFPreadipocytes dynamically produce sensory cilia. However, the role of primary cilia in preadipocyte differentiation and adipose homeostasis remains poorly understood. We previously identified transition fiber component FBF1 as an essential player in controlling selective cilia import.
View Article and Find Full Text PDF