ACS Appl Energy Mater
September 2024
Gallocyanine () was recently introduced as a promising aqueous-soluble electroactive molecule for preparing two-electron storage alkaline flow battery (FB) negolytes. The development of a cost-effective FB electrolyte is limited by the unexpectedly low solubility of . In this work, the compound 7-amino-4-hydroxy-2-naphthalenesulfonic acid was introduced as a molecular spectator to modulate the solubility of in KOH; this formulation allowed the preparation of a negolyte with a theoretical volumetric capacity of 32.
View Article and Find Full Text PDFThe recycling of spent lithium-ion batteries (LIBs) is crucial to sustainably manage resources and protect the environment as the use of portable electronics and electric vehicles (EVs) increases. However, the safe recycling of spent LIBs is challenging, as they often contain residual energy. Left untreated, this can trigger a thermal runaway and result in disasters during the recycling process.
View Article and Find Full Text PDFIn recent years interest in the development of protocols that facilitate the oxidative addition of gold to access mild cross-coupling processes mediated by this metal has increased. In this context, we report herein that ascorbic acid, a natural and readily accessible antioxidant, can be used to accelerate the oxidative addition of aryldiazonium chlorides onto Au . The aryl-Au species generated in this way, has been used to prepare 3-arylindoles in a one-pot protocol starting from anilines and para-, meta-, and ortho- substituted aryldiazonium chlorides.
View Article and Find Full Text PDFCompetition between hydrogen bonding and proton transfer reactions was studied for systems composed of electrogenerated dianionic species from dinitrobenzene isomers and substituted dihomooxacalix[4]arene bidentate urea derivatives. To analyze this competition, a second-order ErCrCi mechanism was considered where the binding process is succeeded by proton transfer and the voltammetric responses depend on two dimensionless parameters: the first related to hydrogen bonding reactions, and the second one to proton transfer processes. Experimental results indicated that, upon an increase in the concentration of phenyl-substituted dihomooxacalix[4]arene bidentate urea, voltammetric responses evolve from diffusion-controlled waves (where the binding process is at chemical equilibrium) into irreversible kinetic responses associated with proton transfer.
View Article and Find Full Text PDFElectron transfer controlled hydrogen bonding was studied for a series of nitrobenzene derivative radical anions, working as large guest anions, and substituted ureas, including dihomooxacalix[4]arene bidentate urea derivatives, in order to estimate binding constants (Kb) for the hydrogen-bonding process. Results showed enhanced Kb values for the interaction with phenyl-substituted bidentate urea, which is significantly larger than for the remaining compounds, e.g.
View Article and Find Full Text PDFIn this work, experimental evidence of the influence of the electron transfer kinetics during electron transfer controlled hydrogen bonding between anion radicals of metronidazole and ornidazole, derivatives of 5-nitro-imidazole, and 1,3-diethylurea as the hydrogen bond donor, is presented. Analysis of the variations of voltammetric EpIcvs. log KB[DH], where KB is the binding constant, allowed us to determine the values of the binding constant and also the electron transfer rate k, confirmed by experiments obtained at different scan rates.
View Article and Find Full Text PDFEvaluation of the substituent effect in reaction series is an issue of interest, as it is fundamental for controlling chemical reactivity in molecules. Within the framework of density functional theory, employment of the chemical potential, μ, and the chemical hardness, η, leads to the calculation of properties of common use, such as the electrodonating (ω(-)) and electroaccepting (ω(+)) powers, in many chemical systems. In order to examine the predictive character of the substituent effect by these indexes, a comparison between these and experimental binding constants (Kb) for binding of a series of radical anions from para- and ortho-substituted nitrobenzenes with 1,3-diethylurea in acetonitrile was performed, and fair correlations were obtained; furthermore, this strategy was suitable for all of the studied compounds, even those for which empirical approximations, such as Hammett's model, are not valid.
View Article and Find Full Text PDF