The transglycosylase Saccharomyces cerevisiae Gas2 (ScGas2) belongs to a large family of enzymes that are key players in yeast cell wall remodeling. Despite its biologic importance, no studies on the synthesis of substrate-based compounds as potential inhibitors have been reported. We have synthesized a series of docking-guided glycomimetics that were evaluated by fluorescence spectroscopy and saturation-transfer difference (STD) NMR experiments, revealing that a minimum of three glucose units linked via a β-(1,3) linkage are required for achieving molecular recognition at the binding donor site.
View Article and Find Full Text PDFA series of β-(1,3)-d-glucans have been synthesized incorporating structural variations specifically on the reducing end of the oligomers. Both O- and C-glucosides derived from di- and trisaccharides have been obtained in good overall yields and with complete selectivity. Whereas the O-glycosides were obtained via a classical Koenigs-Knorr glycosylation, the corresponding C-glycosides were obtained through allylation of the anomeric carbon and further cross-metathesis reaction.
View Article and Find Full Text PDFThe diastereofacial selection in addition reactions to biased rigid systems can be modulated by the action of Lewis acids. As an example, the stereoselectivity of the nucleophilic addition of vinyl magnesium bromide (VMB) to cyclic nitrones in the presence of diethylaluminum chloride (DEAC) shows a strong dependence on the temperature and the carbon substituent adjacent at the reaction center; it is remarkable that whereas a high selectivity is obtained at higher temperatures, in the presence of DEAC, a trend to invert the stereochemical course of the reaction is observed at lower temperatures, provided the substituent at C3 of the pyrrolidine ring allows delivery of the vinyl moiety. This behavior and difference in selectivity is to be attributed to the high conformational barriers of the intermediate nitrone-DEAC-VMB complex.
View Article and Find Full Text PDF