Publications by authors named "Eduardo M Garcia-Roger"

Delving into knowing the blackfly (Diptera: Simuliidae) species composition of Spain and their ecological requirements is crucial, due to their instrumental role in natural food webs as intermediaries in the flow of energy in aquatic ecosystems, and because of the haematophagic behaviour displayed by females of several species. The present study has analysed the abundance and distribution of the larvae and pupae of blackfly species in 105 sampling stations located in lotic water bodies of the provinces of Ávila, Salamanca, and Zamora of the Tormes River basin. The study has allowed to identify 24 species: 17 from Ávila, 13 from Salamanca, and seven from Zamora, classified in three genera (Metacnephia, Prosimulium, and Simulium), and five subgenera (Boophthora, Eusimulium, Nevermannia, Simulium, Wilhelmia).

View Article and Find Full Text PDF

Prior research on metacommunities has largely focused on snapshot surveys, often overlooking temporal dynamics. In this study, our aim was to compare the insights obtained from metacommunity analyses based on a spatial approach repeated over time, with a spatio-temporal approach that consolidates all data into a single model. We empirically assessed the influence of temporal variation in the environment and spatial connectivity on the structure of metacommunities in tropical and Mediterranean temporary ponds.

View Article and Find Full Text PDF

Background: Documentation on water mites in Spain is scarce, as is information on the parasite-host relationship between certain water mite species and representatives of the dipteran family Simuliidae. The discomfort caused to humans and animals by black flies seems to be increasing in recent years. In this context, an investigation of parasitic water mites is of great importance, not only from the point of view of biodiversity, but also in terms of their potential to control black fly populations.

View Article and Find Full Text PDF
Article Synopsis
  • The metacommunity concept explains how organisms are distributed based on environmental filters, dispersal, and drift, yet there are few studies using a multitaxon approach across different biogeographical regions.
  • This study compared tropical and temperate pond metacommunities in Costa Rica and Spain, hypothesizing that temperate ponds are more influenced by environmental and spatial processes due to greater isolation and environmental gradients.
  • Results showed that environmental factors had a stronger impact in Mediterranean ponds, while spatial factors were more significant in tropical ponds, with variations among organism groups particularly influenced by their dispersal abilities.
View Article and Find Full Text PDF

In unpredictable environments in which reliable cues for predicting environmental variation are lacking, a diversifying bet-hedging strategy for diapause exit is expected to evolve, whereby only a portion of diapausing forms will resume development at the first occurrence of suitable conditions. This study focused on diapause termination in the rotifer Brachionus plicatilis s.s.

View Article and Find Full Text PDF

Reliability engineering concerned with failure of technical inanimate systems usually uses the vocabulary and notions of human mortality, e.g., infant mortality vs.

View Article and Find Full Text PDF

Embryonic development is of great importance because it determines congenital anomalies and influences their severity. However, little is known about the actual probabilities of success or failure and about the nature of early embryonic defects. Here, we propose that the analysis of embryonic mortality as a function of post-fertilization time provides a simple way to identify major defects.

View Article and Find Full Text PDF

Elucidating the genetic basis of phenotypic variation in response to different environments is key to understanding how populations evolve. Facultatively sexual rotifers can develop adaptive responses to fluctuating environments. In a previous evolution experiment, diapause-related traits changed rapidly in response to two selective regimes (predictable vs unpredictable) in laboratory populations of the rotifer Brachionus plicatilis.

View Article and Find Full Text PDF

An in-depth look at the basic aspects of dormancy in cyclic parthenogenetic organisms is now possible thanks to research efforts conducted over the past two decades with rotifer dormant embryos. In this review, we assemble and compose the current knowledge on four central themes: (1) distribution of dormancy in animals, with an overview on the phylogenetic distribution of embryo dormancy in metazoans, and (2) physiological and cellular processes involved in dormancy, with a strong emphasis on the dormant embryos of cyclically parthenogenetic monogonont rotifers; and discussions of (3) the selective pressures and (4) the evolutionary and population implications of dormancy in these animals. Dormancy in metazoans is a widespread phenomenon with taxon-specific features, and rotifers are among the animals in which dormancy is an intrinsic feature of their life cycle.

View Article and Find Full Text PDF

Environmental fluctuations are ubiquitous and thus essential for the study of adaptation. Despite this, genome evolution in response to environmental fluctuations -and more specifically to the degree of environmental predictability- is still unknown. Saline lakes in the Mediterranean region are remarkably diverse in their ecological conditions, which can lead to divergent local adaptation patterns in the inhabiting aquatic organisms.

View Article and Find Full Text PDF

Understanding how organisms adaptively respond to environmental fluctuations is a fundamental question in evolutionary biology. The Mediterranean region typically exhibits levels of environmental unpredictability that vary greatly in habitats over small geographical scales. In cyclically parthenogenetic rotifers, clonal proliferation occurs along with occasional bouts of sex.

View Article and Find Full Text PDF

Fluctuations in environmental parameters are increasingly being recognized as essential features of any habitat. The quantification of whether environmental fluctuations are prevalently predictable or unpredictable is remarkably relevant to understanding the evolutionary responses of organisms. However, when characterizing the relevant features of natural habitats, ecologists typically face two problems: (1) gathering long-term data and (2) handling the hard-won data.

View Article and Find Full Text PDF