Lignin-based polyols (LBPs) with controlled microstructure were obtained by cationic ring opening polymerization (CROP) of oxiranes in an organosolv lignin (OL) tetrahydrofuran (THF) solution. The control on the microstructure and consequently on the properties of the LBPs such as hydroxyl number, average molecular weight, melting, crystallization and decomposition temperatures, are crucial to determine the performance and application of the derived-products. The influence of key parameters, for example, molar ratio between the oxirane and the hydroxyl groups content in OLO, initial OL concentration in THF, temperature, specific flow rate and oxirane nature has been investigated.
View Article and Find Full Text PDFA latex of amphiphilic star polymer particles, functionalized in the hydrophobic core with nixantphos and containing P(MAA-co-PEOMA) linear chains in the hydrophilic shell (nixantphos-functionalized core-crosslinked micelles, or nixantphos@CCM), has been prepared in a one-pot three-step convergent synthesis using reversible addition-fragmentation chain transfer (RAFT) polymerization in water. The synthesis involves polymerization-induced self-assembly (PISA) in the second step and chain crosslinking with di(ethylene glycol) dimethacrylate (DEGDMA) in the final step. The core consists of a functionalized polystyrene, obtained by incorporation of a new nixantphos-functionalized styrene monomer (nixantphos-styrene), which is limited to 1 mol%.
View Article and Find Full Text PDFMonolithic silicon carbide supported ionic liquid-phase (SILP) Rh-catalysts have very recently been introduced for gas-phase hydroformylation as an important step toward industrial upscaling. This study investigates the monolithic catalyst system in combination with different impregnation procedures with non-invasive magnetic resonance imaging (MRI). The findings were supported by X-ray microtomography (micro-CT) data of the monolithic pore structure and a catalytic performance test of the catalyst system for 1-butene gas-phase hydroformylation.
View Article and Find Full Text PDFTwo-dimensional electron gases (2DEGs) formed at the interface between two oxide insulators provide a rich platform for the next generation of electronic devices. However, their high carrier density makes it rather challenging to control the interface properties under a low electric field through a dielectric solid insulator, that is, in the configuration of conventional field-effect transistors. To surpass this long-standing limit, we used ionic liquids as the dielectric layer for electrostatic gating of oxide interfaces in an electric double layer transistor (EDLT) configuration.
View Article and Find Full Text PDFPolyvinylpyrrolidone-stabilized Rh nanoparticles (RhNPs/PVP) of ca. 2.2 nm in size were prepared by the hydrogenation of the organometallic complex [Rh(η-CH)] in the presence of PVP and evaluated as a catalyst in the hydrogenation of a series of arene substrates as well as levulinic acid and methyl levulinate.
View Article and Find Full Text PDFHeterogeneous silica supported rhodium-phosphine complex catalysts are employed for the first time in the catalytic decarbonylation of aldehydes in continuous gas-phase. The reaction protocol is exemplified for the decarbonylation of p-tolualdehyde to toluene and further extended to other aromatic and aliphatic aldehydes achieving excellent results in terms of both conversion and selectivity.
View Article and Find Full Text PDFSilver nanoparticles supported on alumina were prepared and tested in the catalytic reduction of various imines to primary and secondary amines and were shown to be exceptionally active and chemoselective. Furthermore, the catalytic activity of the prepared nanocatalyst was also tested in the synthesis of secondary amines from primary amines in a tandem reaction protocol (oxidation-imination-reduction) using air and molecular hydrogen as oxidizing and reducing agents, respectively. The reported synthesis is performed under mild reaction conditions, which complies with the demands of modern organic synthesis.
View Article and Find Full Text PDFIn the last fifteen-years, the application of metal nanoparticles as catalysts in organic synthesis has received a renewed interest. Therefore, much attention is currently being paid to the synthesis of metal nanoparticles in order to achieve the control of their characteristics in terms of size, shape and surface chemistry. Besides this, the recyclability as well as the recovery from the reaction medium still remain the major drawbacks to widespread the use of nanoparticles in catalysis.
View Article and Find Full Text PDFA series of bulky phosphines containing substituted biphenyl, 2-methylnaphthyl, or 2,7-di-tert-butyl-9,9-dimethylxanthene moiety were prepared. They were used in the preparation of new monophosphine-palladium(0)-dvds complexes, which were employed as catalysts for the selective telomerization of 1,3-butadiene with methanol to obtain 1-methoxyocta-2,7-diene (1-MOD), the key intermediate in the Dow 1-octene process. Several ligands showed improved selectivity and yield compared to that of the benchmark ligand PPh(3).
View Article and Find Full Text PDFIn this paper we report on a comparative study of the non-alternating CO-C(2)H(4) copolymerization catalyzed by neutral Pd(II) complexes with the phosphine-sulfonate ligands bis(o-methoxyphenyl)phosphinophenylenesulfonate and bis(o-methoxyphenyl)phosphino-ethylenesulfonate. The former ligand, featuring a lower skeletal flexibility, has been found to form more active catalysts as well as produce polyketones with higher molecular weight and higher extra-ethylene incorporation. Operando high-pressure NMR studies have allowed us to intercept, for the first time, Pd(II)(phosphine-sulfonate) beta-chelates in the non-alternating copolymerization cycle, while model organometallic reactions have contributed to demonstrate that Pd(II) (phosphine-sulfonate) fragments do not form stable carbonyl complexes.
View Article and Find Full Text PDFTwo novel bis(o-methoxyphenyl) phosphinoalkylsulfonate (P-O) ligands have been prepared through a new and sustainable synthetic route; they are air stable as well as water soluble and have been applied in Pd-catalysed Suzuki-Miyaura cross-coupling reactions in neat water in conjunction with microwave heating.
View Article and Find Full Text PDFDalton Trans
June 2006
The bis-cationic diphosphonium-diphosphine 6,7-di(di-2-methoxyphenyl)phosphinyl-2,2,4,4-tetra(di-2-methoxyphenyl)-2 lambda 4,4 lambda 4-diphosphoniumbicyclo[3.1.1]heptane-bis(PF6) ((o-MeO-PCP)(PF6)2) and the diphosphine rac-2,4-bis((di-2-methoxyphenyl)phosphino)pentane (rac-o-MeO-bdpp) have been synthesized.
View Article and Find Full Text PDF