Publications by authors named "Eduardo Henrique Silva Sousa"

There has been growing effort in the scientific community to develop new antibiotics to address the major threat of bacterial resistance. One promising approach is the use of metal complexes that provide broader opportunities. Among these systems, polypyridine-ruthenium(II) complexes have received particular attention as drug candidates.

View Article and Find Full Text PDF

Metallocompounds have emerged as promising new anticancer agents, which can also exhibit properties to be used in photodynamic therapy. Here, we prepared two ruthenium-based compounds with a 2,2'-bipyridine ligand conjugated to an anthracenyl moiety. These compounds coded and contain 2,2'-bipyridine or 1,10-phenathroline as auxiliary ligands, respectively, which provide quite a distinct behavior.

View Article and Find Full Text PDF

New antibiotic agents are urgently needed worldwide to combat the increasing tolerance and resistance of pathogenic fungi and bacteria to current antimicrobials. Here, we looked at the antibacterial and antifungal effects of minor quantities of cetyltrimethylammonium bromide (CTAB), ca. 93.

View Article and Find Full Text PDF

For more than 70 years, sodium nitroprusside (SNP) has been used to treat severe hypertension in hospital emergency settings. During this time, a few other clinical uses have also emerged such as in the treatment of acute heart failure as well as improving mitral incompetence and in the intra- and perioperative management during heart surgery. This drug functions by releasing nitric oxide (NO), which modulates several biological processes with many potential therapeutic applications.

View Article and Find Full Text PDF

This study aimed to investigate the synthesis and potential vasodilator effect of a novel ruthenium complex, cis-[Ru(bpy)(2-MIM)(NO)]PF (bpy = 2,2'-bipyridine and 2-MIM = 2-methylimidazole) (FOR711A), containing an imidazole derivative via an in silico molecular docking model using β1 H-NOX (Heme-nitric oxide/oxygen binding) domain proteins of reduced and oxidized soluble guanylate cyclase (sGC). In addition, pharmacokinetic properties in the human organism were predicted through computational simulations and the potential for acute irritation of FOR711A was also investigated in vitro using the hen's egg chorioallantoic membrane (HET-CAM). FOR711A interacted with sites of the β1 H-NOX domain of reduced and oxidized sGC, demonstrating shorter bond distances to several residues and negative values of total energy.

View Article and Find Full Text PDF

Nitric oxide (NO) has emerged as a promising antibacterial agent, where NO donor compounds have been explored. Here, we investigated the role of a silica nanoparticle containing nitroprusside (MPSi-NP) as a NO donor agent against methicillin-sensitive (ATCC 25,923 and ATCC 12228) and methicillin-resistant (ATCC 700,698 and ATCC 35984) Staphylococcus strains. Biofilm inhibition was studied along with antibiotic activity in combination with standard antibiotics (ampicillin and tetracycline).

View Article and Find Full Text PDF

A chemical activation study of the thiocarbonyl-type antitubercular prodrugs, ethionamide (ETH), thioacetazone (TAZ), and isoxyl (ISO), was performed. Biomimetic oxidation of ethionamide using HO (1 equiv) led to ETH-SO as the only stable -oxide compound, which was found to occur in solution in the preferential form of a sulfine (ETH═S═O vs the sulfenic acid tautomer ETH-S-OH), as previously observed in the crystal state. It was also demonstrated that ETH-SO is capable of reacting with amines, as the putative sulfinic derivative (ETH-SOH) was supposed to do.

View Article and Find Full Text PDF

We aimed at evaluating the anti-asthmatic effect of cis-[Ru(bpy)2(2-MIM)(NO)](PF6)3 (FOR811A), a nitrosyl-ruthenium compound, in a murine model of allergic asthma. The anti-asthmatic effects were analyzed by measuring the mechanical lung and morphometrical parameters in female Swiss mice allocated in the following groups: untreated control (Ctl+Sal) and control treated with FOR811A (Ctl+FOR), along asthmatic groups untreated (Ast+Sal) and treated with FOR811A (Ast+FOR). The drug-protein interaction was evaluated by in-silico assay using molecular docking.

View Article and Find Full Text PDF

A pharmacophore design approach, based on the coordination chemistry of an intimate molecular hybrid of active metabolites of pro-drugs, known to release active species upon enzymatic oxidative activation, is devised. This is exemplified by combining two anti-mycobacterial drugs: pyrazinamide (first line) and delamanid (third line) whose active metabolites are pyrazinoic acid (PyzCOOH) and likely nitroxyl (HNO (or NO)), respectively. Aiming to generate those active species, a hybrid compound was envisaged by coordination of pyrazine-2-hydroxamic acid (PyzCONHOH) with a Na[Fe(CN)] moiety.

View Article and Find Full Text PDF

Nitric oxide (NO) and nitroxyl (HNO) have gained broad attention due to their roles in several physiological and pathophysiological processes. Remarkably, these sibling species can exhibit opposing effects including the promotion of angiogenic activity by NO compared to HNO, which blocks neovascularization. While many NO donors have been developed over the years, interest in HNO has led to the recent emergence of new donors.

View Article and Find Full Text PDF

The aim of this study was to investigate the antibacterial activity, antibiotic-associated synergy, and anti-biofilm activity of the ruthenium complex, -[RuCl (dppb) (bqdi)] (RuNN). RuNN exhibited antimicrobial activity against Gram-positive bacteria with minimum inhibitory concentration (MIC) values ranging from 15.6 to 62.

View Article and Find Full Text PDF

The aim of this study was to investigate the antihypertensive properties of cis-[Ru(bpy)ImN(NO)] (FOR0811) in normotensive and in N-nitro-L-arginine methyl ester (L-NAME)-induced hypertensive rats. Vasorelaxant effects were analyzed by performing concentration response curve to FOR0811 in rat aortic rings in the absence or presence of 1H-[1,2,4]-oxadiazolo-[4,3,-a]quinoxalin-1-one (ODQ), L-cysteine or hydroxocobalamin. Normotensive and L-NAME-hypertensive rats were treated with FOR0811 and the effects in blood pressure and heart rate variability in the frequency domain (HRV) were followed.

View Article and Find Full Text PDF

Inflammation is a physiological process triggered in response to tissue damage, and involves events related to cell recruitment, cytokines release and reactive oxygen species (ROS) production. Failing to control the process duration lead to chronification and may be associated with the development of various pathologies, including autoimmune diseases and cancer. Considering the pharmacological potential of metal-based compounds, two new ruthenium complexes were synthesized: cis-[Ru(NO)(bpy)(5NIM)]PF (1) and cis-[RuCl(bpy)(MTZ)]PF (2), where bpy = 2,2'-bipyridine, 5NIM = 5-nitroimidazole and MTZ = metronidazole.

View Article and Find Full Text PDF

The emergence of multidrug-resistant strains of Mycobacterium tuberculosis (MTB) represents a major threat to global health. Isoniazid (INH) is a prodrug used in the first-line treatment of tuberculosis. It undergoes oxidation by a catalase-peroxidase KatG, leading to generation of an isonicotinoyl radical that reacts with NAD(H) forming the INH-NADH adduct as the active metabolite.

View Article and Find Full Text PDF

Ruthenium polypyridine complexes have shown promise as agents for photodynamic therapy (PDT) and tools for molecular biology (chromophore-assisted light inactivation). To accomplish these tasks, it is important to have at least target selectivity and great reactive oxygen species (ROS) photogeneration: two properties that are not easily found in the same molecule. To prepare such new agents, we synthesized two new ruthenium complexes that combine an efficient DNA binding moiety (dppz ligand) together with naphthyl-modified (1) and anthracenyl-modified (2) bipyridine as a strong ROS generator bound to a ruthenium complex.

View Article and Find Full Text PDF

Heme-based sensors have emerged during the last 20years as being a large family of proteins that occur in all kingdoms of life. A myriad of biological adaptations are associated with these sensors, which include vasodilation, bacterial virulence, dormancy, chemotaxis, biofilm formation, among others. Due to the key activities regulated by these proteins along with many other systems that use similar output domains, there is a growing interest in developing small molecules as their regulators.

View Article and Find Full Text PDF

Metallonitrosyl complexes are promising as nitric oxide (NO) donors for the treatment of cardiovascular, endothelial, and pathogenic diseases, as well as cancer. Recently, the reduced form of NO(-) (protonated as HNO, nitroxyl, azanone, isoelectronic with O2) has also emerged as a candidate for therapeutic applications including treatment of acute heart failure and alcoholism. Here, we show that HNO is a product of the reaction of the Ru(II) complex [Ru(bpy)2(SO3)(NO)](+) (1) with glutathione or N-acetyl-L-cysteine, using met-myoglobin and carboxy-PTIO (2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) as trapping agents.

View Article and Find Full Text PDF

Tuberculosis has re-emerged as a worldwide threat, which has motivated the development of new drugs. The antituberculosis complex Na3[Fe(CN)5(isoniazid)] (IQG607) in particular is of interest on account of its ability to overcome resistance. IQG607 has the potential for redox-mediated-activation, in which an acylpyridine (isonicotinoyl) radical could be generated without assistance from the mycobacterial KatG enzyme.

View Article and Find Full Text PDF

We have previously demonstrated a potent in vitro inhibitory activity for two pentacyano(isoniazid)ferrate(II) compounds, namely IQG-607 and IQG-639, against the Mycobacterium tuberculosis enoyl-acyl carrier protein reductase enzyme. In this study, the activity of these compounds was evaluated using an in vivo murine model of tuberculosis. Swiss mice were infected with M.

View Article and Find Full Text PDF

For over a decade, tuberculosis (TB) has been the leading cause of death among infectious diseases. Since the 1950s, isoniazid has been used as a front-line drug in the treatment of TB; however, resistant TB strains have limited its use. The major route of isoniazid resistance relies on KatG enzyme disruption, which does not promote an electron transfer reaction.

View Article and Find Full Text PDF

Heme-based sensors are a recently discovered functional class of heme proteins that serve to detect physiological fluctuations in oxygen (O(2)), carbon monoxide (CO), or nitric oxide (NO). Many of these modular sensors detect heme ligands by coupling a histidine-protein kinase to a heme-binding domain. They typically bind O2, CO, and NO but respond only to one of these ligands.

View Article and Find Full Text PDF

Exposure of Mycobacterium tuberculosis to hypoxia is known to alter the expression of many genes, including ones thought to be involved in latency, via the transcription factor DevR (also called DosR). Two sensory kinases, DosT and DevS (also called DosS), control the activity of DevR. We show that, like DevS, DosT contains a heme cofactor within an N-terminal GAF domain.

View Article and Find Full Text PDF

Bradyrhizobium japonicum FixL is a modular oxygen sensor that directs adaptations to hypoxia by coupling the status of a heme-binding domain to a histidine-protein kinase activity. The oxygen-bound form is the "off-state". The unliganded form is the "on-state" active kinase that phosphorylates a transcription factor, FixJ.

View Article and Find Full Text PDF

In oxygen-sensing PAS domains, a conserved polar residue on the proximal side of the heme cofactor, usually arginine or histidine, interacts alternately with the protein in the "on-state" or the heme edge in the "off-state" but does not contact the bound ligand directly. We assessed the contributions of this residue in Bradyrhizobium japonicum FixL by determining the effects of an R206A substitution on the heme-PAS structure, ligand affinity, and regulatory capacity. The crystal structures of the unliganded forms of the R206A and wild-type BjFixL heme-PAS domains were similar, except for a more ruffled porphyrin ring in R206A BjFixL and a relaxation of the H214 residue and heme propionate 7 due to their lost interactions.

View Article and Find Full Text PDF

The RmFixL-RmFixJ oxygen signal transduction system ensures that a cascade of the Sinorhizobium meliloti nitrogen fixation genes is induced as the concentration of O2 drops below 50 microM in symbiotic nodules. Deoxy-RmFixL is a histidine protein kinase that catalyzes a phosphoryl transfer from ATP to the aspartate 54 residue of RmFixJ; RmFixJ is a response regulator that becomes activated as a transcription factor by phosphorylation. Association of O2 with a heme-binding domain in RmFixL triggers a conformational change that inhibits its kinase activity.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionl1ksg73nj3d0s2kfm2bpvqueu3bbpvtc): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once