Bioactive and biodegradable scaffolds that mimic the natural extracellular matrix of bone serve as temporary structures to guide new bone tissue growth. In this study, 3D-printed scaffolds composed of poly (lactic acid) (PLA)-tricalcium phosphate (TCP) (90-10 wt.%) were modified with 1%, 5%, and 10 wt.
View Article and Find Full Text PDFThe fabrication of customized implants by additive manufacturing has allowed continued development of the personalized medicine field. Herein, a 3D-printed bioabsorbable poly (lactic acid) (PLA)- β-tricalcium phosphate (TCP) (10 wt %) composite has been modified with CeO nanoparticles (CeNPs) (1, 5 and 10 wt %) for bone repair. The filaments were prepared by melt extrusion and used to print porous scaffolds.
View Article and Find Full Text PDFBackground: Poly (lactic acid) (PLA) is a biodegradable polyester that has been exploited for a variety of biomedical applications, including tissue engineering. The incorporation of β-tricalcium phosphate (TCP) into PLA has imparted bioactivity to the polymeric matrix.
Methods: We have modified a 90%PLA-10%TCP composite with SiO and MgO (1, 5 and 10 wt%), separately, to further enhance the material bioactivity.
3D bioprinting has opened new possibilities and elevated tissue engineering complexity. Here, we present a protocol to design a 3D model with two cell lineage layers (A549 and HUVEC) to recreate multi-cell constructs. We describe the steps for slicing the constructs, handling hydrogels, and detailing the bioprinting setup.
View Article and Find Full Text PDFNeuronal loss is the ultimate pathophysiologic event in central nervous system (CNS) diseases and replacing these neurons is one of the most significant challenges in regenerative medicine. Providing a suitable microenvironment for new neuron engraftment, proliferation, and synapse formation is a primary goal for 3D bioprinting. Among the various biomaterials, gelatin methacrylate (GelMA) stands out due to its Arg-Gly-Asp (RGD) domains, which assure its biocompatibility and degradation under physiological conditions.
View Article and Find Full Text PDFPolycaprolactone (PCL) has been extensively applied on tissue engineering because of its low-melting temperature, good processability, biodegradability, biocompatibility, mechanical resistance, and relatively low cost. The advance of additive manufacturing (AM) technologies in the past decade have boosted the fabrication of customized PCL products, with shorter processing time and absence of material waste. In this context, this review focuses on the use of AM techniques to produce PCL scaffolds for various tissue engineering applications, including bone, muscle, cartilage, skin, and cardiovascular tissue regeneration.
View Article and Find Full Text PDFIn this study, polylactic acid (PLA) filled with hydroxyapatite (HA) or beta-tricalcium phosphate (TCP) in 5 wt% and 10 wt% of concentration were produced employing twin-screw extrusion followed by fused filament fabrication in two different architectures, varying the orientation of fibers of adjacent layers. The extruded 3D filaments presented suitable rheological and thermal properties to manufacture of 3D scaffolds envisaging bone tissue engineering. The produced scaffolds exhibited a high level of printing accuracy related to the 3D model; confirmed by micro-CT and electron microscopy analysis.
View Article and Find Full Text PDF