Publications by authors named "Eduardo G Victor"

Background: Ceramic industry workers are subjected to several factors, such as high temperature, dust and work in standing position, which in greater or lesser degree might cause discomfort and work-related disorders.

Objective: To investigate the quality of life and functional capacity of ceramic industry workers.

Methods: The present study had a quantitative cross-sectional design.

View Article and Find Full Text PDF

The aim of this study was to analyse the effects of microcurrent and gold nanoparticles on oxidative stress parameters and the mitochondrial respiratory chain in the healing of skin wounds. Thirty 60-day old male Wistar rats (250-300 g) were divided into five groups (N=6): Control; Burn wounds; Microcurrent (MIC); Gold nanoparticle gel (GNP gel) and Microcurrent+Gold nanoparticle gel (MIC+GNP gel). The microcurrent treatment was applied for five consecutive days at a dose of 300 μA.

View Article and Find Full Text PDF

The aim of this study was to evaluate the effects of therapeutic pulsed ultrasound with gold nanoparticles on oxidative stress parameters after traumatic muscle injury in Wistar rats. The animals were randomly divided into nine groups (n = 6 each): sham (uninjured muscle); muscle injury without treatment; muscle injury and treatment with dimethyl sulfoxide (15 mg/kg); muscle injury and treatment with gold nanoparticles (27 µg); muscle injury and treatment with dimethyl sulfoxide + gold nanoparticles (Plus); muscle injury and therapeutic pulsed ultrasound; muscle injury and therapeutic pulsed ultrasound + dimethyl sulfoxide; muscle injury and therapeutic pulsed ultrasound + gold nanoparticles; and muscle injury and therapeutic pulsed ultrasound + Plus. Gastrocnemius injury was induced by a single-impact blunt trauma.

View Article and Find Full Text PDF

Aims: To investigate the effects physical training exerts on markers of oxidative stress in rats with chronic kidney disease (CKD).

Main Methods: Twenty-four male Wistar rats were divided into four groups (n=6): sham, CKD, exercise-sham and exercise-CKD. Surgical reduction of the renal mass was performed (5/6 nephrectomized) and exercise was conducted on a treadmill (50 min/day up to 1 km/h for, 5 days/week for eight weeks).

View Article and Find Full Text PDF

Studies have shown an exacerbated increase in proinflammatory markers during and after muscle injury. In this way, interventions that reduce inflammatory activation appear to be of great interest in muscle injury therapy. Thus, the preset study evaluated the effect of low-intensity pulsed ultrasound (LIPUS) and dimethylsulfoxide (DMSO) on the proinflammatory molecules in an animal model of traumatic muscle injury.

View Article and Find Full Text PDF

Background: Nanogold has been investigated in a wide variety of biomedical applications because of the anti-inflammatory properties. The purpose of this study was to evaluate the effects of TPU (Therapeutic Pulsed Ultrasound) with gold nanoparticles (GNP) on oxidative stress parameters and the expression of pro-inflammatory molecules after traumatic muscle injury.

Materials And Methods: Animals were divided in nine groups: sham (uninjured muscle); muscle injury without treatment; muscle injury + DMSO; muscle injury + GNP; muscle injury + DMSO + GNP; muscle injury + TPU; muscle injury + TPU + DMSO; muscle injury + TPU + GNP; muscle injury + TPU + DMSO + GNP.

View Article and Find Full Text PDF

Many studies have demonstrated an increase in reactive oxygen species (ROS) and oxidative damage markers after muscle damage. Phonophoresis aims to achieve therapeutically relevant concentrations of the transdermally introduced drug in the tissues subjected to the procedure by the use ultrasound waves. The aim of the study was to evaluate the effects on the therapeutic pulsed ultrasound (TPU) together with gel-dimethylsulfoxide (DMSO) in the parameters of muscular damage and oxidative stress.

View Article and Find Full Text PDF

In this article, we report the effects of acute administration of ruthenium complexes, trans-[RuCl(2)(nic)(4)] (nic=3-pyridinecarboxylic acid) 180.7 micromol/kg (complex I), trans-[RuCl(2)(i-nic)(4)] (i-nic=4-pyridinecarboxylic acid) 13.6 micromol/kg (complex II), trans-[RuCl(2)(dinic)(4)] (dinic=3,5-pyridinedicarboxylic acid) 180.

View Article and Find Full Text PDF

Creatine kinase is a crucial enzyme for brain, heart and skeletal muscle energy homeostasis, and a decrease of its activity has been associated with cell death. Many biological properties have been attributed to ruthenium complexes. In this context, this work was performed in order to evaluate creatine kinase activity from rat brain, heart and skeletal muscle (quadriceps) after administration of ruthenium complexes, trans-[RuCl(2)(nic)(4)] (nic=3-pyridinecarboxylic acid) 180.

View Article and Find Full Text PDF