Noncontact injuries are prevalent among professional football players. Yet, most research on this topic is retrospective, focusing solely on statistical correlations between Global Positioning System (GPS) metrics and injury occurrence, overlooking the multifactorial nature of injuries. This study introduces an automated injury identification and prediction approach using machine learning, leveraging GPS data and player-specific parameters.
View Article and Find Full Text PDFMachine Learning (ML) delivers an accurate and quick prediction outcome and it has become a powerful tool in health settings, offering personalized clinical care for stroke patients. An application of ML and Deep Learning in health care is growing however, some research areas do not catch enough attention for scientific investigation though there is real need of research. Therefore, the aim of this work is to classify state-of-arts on ML techniques for brain stroke into 4 categories based on their functionalities or similarity, and then review studies of each category systematically.
View Article and Find Full Text PDF