Positron emission tomography (PET) imaging is used in drug development to noninvasively measure biodistribution and receptor occupancy. Ideally, PET tracers retain target binding and biodistribution properties of the investigated drug. Previously, we developed a zirconium-89 PET tracer based on a long-circulating glucagon-like peptide 1 receptor agonist (GLP-1RA) using desferrioxamine (DFO) as a chelator.
View Article and Find Full Text PDFPositron emission tomography (PET) is a molecular imaging modality that enables non-invasive visualization of tracer distribution and pharmacology. Recently, peptides with long half-lives allowed once-a-week dosing of glucagon-like peptide-1 receptor (GLP-1R) agonists with therapeutic applications in diabetes and obesity. PET imaging for such long-lived peptides is hindered by the typically used short-lived radionuclides.
View Article and Find Full Text PDFAntioxidants (Basel)
March 2021
Inflammation is one key process in driving cellular redox homeostasis toward oxidative stress, which perpetuates inflammation. In the brain, this interplay results in a vicious cycle of cell death, the loss of neurons, and leakage of the blood-brain barrier. Hence, the neuroinflammatory response fuels the development of acute and chronic inflammatory diseases.
View Article and Find Full Text PDFNovel stroke therapies are needed. Inhibition of the interaction between the postsynaptic density-95 (PSD-95)/disc large/ZO-1 (PDZ) domains of PSD-95 and the -methyl-D-aspartate (NMDA) receptor has been suggested as a strategy for relieving neuronal damage. The peptides NR2B9c and -dimer have been designed to hinder this interaction; they are conjugated to the cell-penetrating peptide Tat to facilitate blood-brain barrier (BBB) permeation and neuronal uptake.
View Article and Find Full Text PDF