Publications by authors named "Eduardo F Vicente"

Experiments were conducted to determine the effects of a triple-action fungicide on bees and whether improved nutrition can ameliorate eventual negative impacts. In cage tests, newly-emerged bees from well fed and from nutritionally-restricted honey bee colonies were fed for five days with pollen from sunflowers that had been sprayed or not with a commercial fungicide containing bixafen, prothioconazole and trifloxystrobin. Bees from well-fed colonies were significantly larger and consumed more uncontaminated pollen.

View Article and Find Full Text PDF

Banana is one of the most consumed and popular fruits in all regions of the world, being cultivated mainly in tropical countries. It is not only a rich source of vitamins A, C, and B, calcium, iron, potassium, phosphorus, and other vitamins and nutrients, but it also contains several types of antioxidants with high nutritional value. In this context, the current study aimed to quantify the content of ascorbic acid, flavonoids, pigments, and minerals present in "Nanicão" bananas during the ripening process.

View Article and Find Full Text PDF

Tuberculosis is caused by Mycobacterium tuberculosis (MTB) and is the leading cause of death from infectious diseases in the World. The search for new antituberculosis drugs is a high priority, since several drug-resistant TB-strains have emerged. Many nanotechnology strategies are being explored to repurpose or revive drugs.

View Article and Find Full Text PDF

The mortality rate caused by parasitic worms on their hosts is of great concern and studies have been carried out to find molecules to reduce the prevalence, host-parasite interaction, and resistance of parasites to treatments. Existing drugs on the market are very often toxic and have many side effects, hence the need to find new, more active molecules. It has been demonstrated in several works that medicinal plants constitute a wide range of new molecules that can solve this problem.

View Article and Find Full Text PDF

Introduction: High quality corn silage depends on factors such as corn type, stage of crop development at harvest time, fermentation time, in addition to use or not of inoculants. This study aimed to investigate the impact of maturity stage, bacterial inoculation, and storage time on fermentation, aerobic stability, and nutritional characteristics of flint corn silage and their implications for corn silage management.

Methods: A flint corn hybrid was harvested very early, early, and medium (at 250, 300 and 350 g dry matter (DM)/kg as fed, respectively) and ensiled in mini-silos without (control) or with CNCM I-4323 at 1 × 10 cfu/g for 120, 240 and 360 d to investigate how these factors interact with each other.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the impact of nickel (Ni) on photosynthesis, antioxidant activity, and nitrogen fixation in cowpea plants, highlighting a lack of previous research on this topic.
  • At different Ni concentrations (0, 0.5, 1, 2, or 3 mg/kg), researchers measured various metabolic parameters, showing that a low level (0.5 mg/kg) improved plant growth and yield, while higher levels (2-3 mg/kg) inhibited these outcomes.
  • The findings suggest that optimizing Ni levels can enhance cowpea productivity, potentially aiding food security as global population demands increase.
View Article and Find Full Text PDF

The incorrect use of conventional drugs for both prevention and control of intestinal infections has contributed to a significant spread of bacterial resistance. In this way, studies that promote their replacement are a priority. In the last decade, the use of antimicrobial peptides (AMP), especially Ctx(Ile)-Ha AMP, has gained strength, demonstrating efficient antimicrobial activity (AA) against pathogens, including multidrug-resistant bacteria.

View Article and Find Full Text PDF

The importance of obtaining new compounds with improved antimicrobial activity is a current trend and challenge. Some polymers such as chitosan have shown promising bactericidal properties when they are structurally modified, which is due to the binding versatility provided by their free amines. Likewise, antimicrobial peptides (AMPs) have received attention in recent years because of their bactericidal activity that is similar to or even better than that of conventional drugs, and they exhibit a low induction rate of antimicrobial resistance.

View Article and Find Full Text PDF

Nanobiotechnology is a relatively unexplored area that has, nevertheless, shown relevant results in the fight against some diseases. Antimicrobial peptides (AMPs) are biomacromolecules with potential activity against multi/extensively drug-resistant bacteria, with a lower risk of generating bacterial resistance. They can be considered an excellent biotechnological alternative to conventional drugs.

View Article and Find Full Text PDF

Tetraethyl pyrophosphate (TEPP) is an organophosphate pesticide that irreversibly inhibits acetylcholinesterase (AChE). Cork powder or granules have been recommended as a sustainable sorbent to remove pesticides from water. In the present study, we evaluated the effectiveness of removing TEPP from water using wine corks to obtain cork granules as natural adsorbent, analyzing the TEPP effects on AChE activity in commercial enzyme from and secreted by neuronal PC12 cells.

View Article and Find Full Text PDF

Orbitides are bioactive head-to-tail natural cyclic peptides from plant species. Their bioactivity is intrinsically related to the main conformations adopted in solution, whose correct characterization represents an important bottleneck for medicinal chemistry applications. To date, NMR spectrosocopy has been the most frequently used technique to assess the secondary structure of orbitides.

View Article and Find Full Text PDF

In the last few years, feed additives have been used in animal nutrition to improve nutrient utilization, health parameters and animal performance. However, the use of antibiotics as feed additives has allowed the occurrence of antimicrobial resistance (AMR), which can bring as a consequence, an increase in the morbidity and mortality of diseases that were previously treatable with antibiotics. In this context, antimicrobial peptides (AMP) have appeared as a promising strategy because they have multiple biological activities and represent a powerful strategy to prevent the development of resistant microorganisms.

View Article and Find Full Text PDF

The diseases affecting the Central Nervous System (CNS) can have varied etiopathology, but they have in common silent progression, global incidence, and significant impacts on the quality of life of patients and public health systems. With the advance of biomedicine and pharmaceutical technology, new and more modern diagnostic methods and treatments were developed, repurposing the use of drugs currently available for the treatment of CNS diseases. An attractive approach is the use of alternative drug delivery platforms, such as nanocarriers, and less invasive administration routes, such as the noseto- brain, extensively explored for the delivery of drugs into the CNS.

View Article and Find Full Text PDF

Numerous environmental and endogenous factors affect the level of genetic diversity in natural populations. Genetic variability is the cornerstone of evolution and adaptation of species. However, currently, more and more plant species and local varieties (landraces) are on the brink of extinction due to anthropopression and climate change.

View Article and Find Full Text PDF

Paraquat is resistant to degradation by conventional treatments, being necessary to use treatments with greater effectiveness, such as advanced oxidative processes. In this work, different advanced oxidative processes were applied (Fenton, electro-Fenton, photoelectro-oxidation and photoelectro-Fenton) employing oxide electrodes to degrade Gramoxone, a commercial herbicide that contains paraquat in its composition. The degradation and formation of by-products were accompanied by high performance liquid chromatography, total organic carbon (TOC) and chemical oxygen demand (COD).

View Article and Find Full Text PDF

The constant use of synthetic antibiotics as growth promoters can cause bacterial resistance in chicks. Consequently, the use of these drugs has been restricted in different countries. In recent years, antimicrobial peptides have gained relevance due to their minimal capacity for bacterial resistance and does not generate toxic residues that harm the environment and human health.

View Article and Find Full Text PDF

Microencapsulation is a potential biotechnological tool, which can overcome antimicrobial peptides (AMP) instabilities and reduce toxic side effects. Thus, this study evaluates the antibacterial activities of the Ctx(Ile)-Ha AMP against multidrug-resistant (MDR) and non-resistant bacteria and develop and characterize peptide-loaded microparticles coated with the enteric polymers hydroxypropylmethylcellulose acetate succinate (HPMCAS) and hydroxypropylmethylcellulose phthalate (HPMCP). Ctx(Ile)-Ha was obtained by solid phase peptide synthesis (SPPS) method, purified and characterized by HPLC and Mass Spectrometry.

View Article and Find Full Text PDF

There is no use restriction associated with bees for many fungicides used in agriculture; however, this does not always mean that these pesticides are harmless for these nontarget organisms. We investigated whether the fungicide pyraclostrobin, which acts on fungal mitochondria, also negatively affects honey bee mitochondrial bioenergetics. Honey bees were collected from 5 hives and anesthetized at 4 °C.

View Article and Find Full Text PDF

Cyclodextrin (CD) is a conical compound used in food and pharmaceutical industry to complexation of hydrophobic substances. It is a product of microbial enzymes which converts starch into CD during their activity. We aim to detect CD using active-electrode biosensor of SnO.

View Article and Find Full Text PDF

Actinoporins sticholysin I and sticholysin II (St I, St II) are proposed to lyse model and biomembranes via toroidal pore formation by their N-terminal domain. Based on the hypothesis that peptide fragments can reproduce the structure and function of this domain, the behavior of peptides containing St I residues 12-31 (StI12-31), St II residues 11-30 (StII11-30), and its TOAC-labeled analogue (N-TOAC-StII11-30) was examined. Molecular modeling showed a good match with experimental structures, indicating amphipathic α-helices in the same regions as in the toxins.

View Article and Find Full Text PDF

Human dihydroorotate dehydrogenase (HsDHODH) enzyme has been studied as selective target for inhibitors to block the enzyme activity, intending to prevent proliferative diseases. The N-terminal microdomain seems to play an important role in the enzyme function. However, the molecular mechanism of action and dynamics of this region are not totally understood yet.

View Article and Find Full Text PDF

This study aims at evaluating the clinical effects of Platelet Rich Plasma (PRP) and Hyaluronic Acid (HA) as individual treatments for mild to moderate Osteoarthritis (OA) and it also examines the potential synergistic effects of PRP in combination with HA. Research continues to emerge examining the potential therapeutic efficacy of HA and PRP as autologous injectable treatments for joint arthritis. However, there is a paucity of research investigating the effects of combining HA and PRP on pain and functional status in patients with OA.

View Article and Find Full Text PDF

Viral membrane fusion is an orchestrated process triggered by membrane-anchored viral fusion glycoproteins. The S2 subunit of the spike glycoprotein from severe acute respiratory syndrome (SARS) coronavirus (CoV) contains internal domains called fusion peptides (FP) that play essential roles in virus entry. Although membrane fusion has been broadly studied, there are still major gaps in the molecular details of lipid rearrangements in the bilayer during fusion peptide-membrane interactions.

View Article and Find Full Text PDF

The human enzyme dihydroorotate dehydrogenase (HsDHODH) has been studied for being a target for development of new antineoplasic and antiproliferative drugs. The synthetic peptide N-t(DH) represents the N-terminal microdomain of this enzyme, responsible for anchoring it to the inner mitochondrial membrane. Also, it is known to harbor quinones that are essential for enzyme catalysis.

View Article and Find Full Text PDF