Publications by authors named "Eduardo F Mufarrege"

IFNβ (recombinant interferon Beta) has been widely used for the treatment of Multiple sclerosis for the last four decades. Despite the human origin of the IFNβ sequence, IFNβ is immunogenic, and unwanted immune responses in IFNβ-treated patients may compromise its efficacy and safety in the clinic. In this study, we applied the DeFT (De-immunization of Functional Therapeutics) approach to producing functional, de-immunized versions of IFNβ-1a.

View Article and Find Full Text PDF
Article Synopsis
  • Recombinant human interferon alpha (rhIFN-α2b) has been a long-time treatment for viral diseases but has issues like immunogenicity and a short half-life.
  • Two new hyperglycosylated proteins, 4N-IFN(VAR1) and 4N-IFN(VAR3), have been developed to address these limitations, showing lower immune responses compared to the original.
  • Studies indicate these new proteins are more stable under various production and storage conditions, making them promising candidates for treating viral diseases in humans.
View Article and Find Full Text PDF

Human interferon alpha (hIFN-α) administration constitutes the current FDA approved therapy for chronic Hepatitis B and C virus infections. Additionally, hIFN-α treatment efficacy was recently demonstrated in patients with COVID-19. Thus, hIFN-α constitutes a therapeutic alternative for those countries where vaccination is inaccessible and for people who did not respond effectively to vaccination.

View Article and Find Full Text PDF

In the pharmaceutical industry, the need for high levels of protein expression in mammalian cells has prompted the search for new strategies, including technologies to obtain cells with improved mechanisms that enhance its transcriptional activity, folding, or protein secretion. Chinese Hamster Ovary (CHO) cells are by far the most used host cell for therapeutic protein expression. However, these cells produce specific glycans that are not present in human cells and therefore potentially immunogenic.

View Article and Find Full Text PDF

Recombinant human interferon-β (rhIFN-β) therapy is the first-line treatment in relapsing-remitting forms of multiple sclerosis (MS). The mechanism of action underlying its therapeutic activity is only partially understood as IFN-βs induce the expression of over 1000 genes modifying multiple immune pathways. Currently, assessment of potency for IFN-β products is based on their antiviral effect, which is not linked to its therapeutic effect.

View Article and Find Full Text PDF

Interferon α (IFN-α) exerts potent antiviral, immunomodulatory, and antiproliferative activity and have proven clinical utility in chronic hepatitis B and C virus infections. However, repeated IFN-α administration induces neutralizing antibodies (NAb) against the therapeutic in a significant number of patients. Associations between IFN-α immunogenicity and loss of efficacy have been described.

View Article and Find Full Text PDF

Background: Recombinant protein overexpression in mammalian cells constitutes a real challenge in therapeutic protein production. Following the discovery of intron functionality in gene expression, various expression vectors that include them in their sequences have been developed. In this study, the main goal was to develop new lentiviral vectors (LVs) carrying different promoter and intron-containing 5'UTR (5' untranslated region) combinations and the design of LVs for rhFVIII production in Chinese hamster ovary (CHO) cells.

View Article and Find Full Text PDF

The exon junction complex (EJC) is deposited on mRNA after splicing and participates in several aspects of RNA metabolism, from intracellular transport to translation. In this work, the functional and molecular interactions of Arabidopsis homologues of Mago, Y14, and PYM, three EJC components that participate in intron-mediated enhancement of gene expression in animals, have been analysed. AtMago, AtY14, and AtPYM are encoded by single genes that show similar expression patterns and contain common regulatory elements, known as site II, that are required for expression.

View Article and Find Full Text PDF

The promoters of the three Arabidopsis nuclear genes encoding mitochondrial cytochrome c oxidase subunit 6b (AtCOX6b) have similar expression patterns, with preferential expression in anthers and meristems, and are induced by sucrose and etiolation. Additionally, induction of AtCOX6b-1 by GA(3) and AtCOX6b-3 by 6-benzylaminopurine was observed. Site II elements (TGGGCC/T) present in the three promoters bind common nuclear proteins and are important for basal and induced expression.

View Article and Find Full Text PDF

Publicly available microarray experiments were used to analyze Arabidopsis thaliana genes whose expression is correlated with that of nuclear genes encoding components of the oxidative phosphorylation machinery (OxPhos genes). This analysis indicated the existence of coordination in the expression of genes encoding components of the five respiratory complexes. For these genes, preferential expression was observed in anthers and roots, especially in the elongation zone, while reduced or very low relative expression was evident in leaves and mature pollen grains.

View Article and Find Full Text PDF