The use of the specific binding properties of monoclonal antibody fragments such as single-chain variable fragments (ScFv) for the selective delivery of antitumor therapeutics for cancer cells is attractive due to their smaller size, low immunogenicity, and low-cost production. Although covalent strategies for the preparation of such ScFv-based therapeutic conjugates are prevalent, this approach is not straightforward, as it requires prior chemical activation and/or modification of both the ScFv and the therapeutics for the application of robust chemistries. A non-covalent alternative based on ScFv fused to maltose-binding protein (MBP) acting as a binding adapter is proposed for active targeted delivery.
View Article and Find Full Text PDFChromophore-appended cyclodextrins combine the supramolecular loading capabilities of cyclodextrins (CDs) with the optical properties of the affixed chromophores. Among fluorescent materials, carbon dots (CNDs) are attractive and the feasibility of CND-appended CDs as sensors has been demonstrated by different authors. However, CNDs are intrinsically heterogeneous materials and their ulterior functionalization yields hybrid composites that are not well defined in terms of structure and composition.
View Article and Find Full Text PDFSaponins are potential wide-spectrum antitumor drugs, and copper(I) catalyzed azide-alkyne 1,3-dipolar cycloaddition is a suitable approach to synthesizing saponin-like compounds by regioselective glycosylation of the C2/C3 hydroxyl and C28 carboxylic groups of triterpene aglycones maslinic acid (MA) and oleanolic acid (OA). Biological studies on the T-84 human colon carcinoma cell line support the role of the hydroxyl groups at C2/C3, the influence of the aglycone, and the bulky nature of the substituents in C28. OA bearing a α-d-mannose moiety at C28 (compound ) focused our interest because the estimated inhibitory concentration 50 was similar to that reported for ginsenoside Rh2 against colon cancer cells and it inhibits the G-S phase transition affecting the cell viability and apoptosis.
View Article and Find Full Text PDFPolymer-based nanotheranostics are appealing tools for cancer treatment and diagnosis in the fast-growing field of nanomedicine. A straightforward preparation of novel engineered PEI-based nanotheranostics incorporating NIR fluorescence heptamethine cyanine dyes (NIRF-HC) to enable them with tumor targeted gene delivery capabilities is reported. Branched PEI-2 kDa (b2kPEI) is conjugated with IR-780 and IR-783 dyes by both covalent and noncovalent simple preparative methodologies varying their stoichiometry ratio.
View Article and Find Full Text PDF