"Tandem" uncaging systems, in which a photolabile protecting group (PPG) is sensitized by an energy-harvesting antenna, may increase the photosensitivity of PPGs by several orders of magnitude for two-photon (2P) photorelease. Yet, they remain poorly accessible because of arduous multi-step synthesis. In this work, we design efficient tandem uncaging systems by (i) using a convenient assembly of the building blocks relying on click chemistry, (ii) introducing H-bonding induced proximity thus facilitating (iii) photoinduced electron transfer (PeT) as a cooperative mechanism.
View Article and Find Full Text PDFNanostructured porous silicon (pSi) is a synthetic silicon-based material. Its biocompatibility and bioresorbability in body fluids make pSi an appealing biomaterial for tissue engineering, with surfaces characteristics facilitating human cell adhesion and differentiation. The resorption kinetics of such porous biomaterials is crucial for in vivo bone regeneration, in order to adapt biomaterial resorption to tissue formation, and to control the release of loaded bioactive molecules.
View Article and Find Full Text PDFThe concept of using two-photon excitation in the NIR for the spatiotemporal control of biological processes holds great promise. However, its use for the delivery of nucleic acids has been very scarcely described and the reported procedures are not optimal as they often involve potentially toxic materials and irradiation conditions. This work prepares a simple system made of biocompatible porous silicon nanoparticles (pSiNP) for the safe siRNA photocontrolled delivery and gene silencing in cells upon two-photon excitation.
View Article and Find Full Text PDFThe role of minerals in the origin of life and prebiotic evolution remains unknown and controversial. Mineral surfaces have the potential to facilitate prebiotic polymerization due to their ability to adsorb and concentrate biomolecules that subsequently can catalyse reactions; however, the precise nature of the interaction between the mineral host and the guest biomolecule still needs to be understood. In this context, we spectroscopically characterized, using infrared, X-ray photoemission spectroscopy (XPS) and X-ray diffraction (XRD) techniques, the interaction between L-proline and montmorillonite, olivine, iron disulphide, and haematite (minerals of prebiotic interest), by evaluating their interaction from a liquid medium.
View Article and Find Full Text PDFThe trypanosome alternative oxidase (TAO), a mitochondrial enzyme involved in the respiration of the bloodstream form trypomastigotes of , is a validated drug target against African trypanosomes. Earlier series of TAO inhibitors having a 2,4-dihydroxy-6-methylbenzoic acid scaffold ("head") and a triphenylphosphonium or quinolin-1-ium cation as a mitochondrion-targeting group ("tail") were shown to be nanomolar inhibitors in enzymatic and cellular assays. We investigated here the effect of different mitochondrion-targeting cations and other scaffold modifications on the in vitro activity of this class of inhibitors.
View Article and Find Full Text PDFIn this work, we have described the characterization of hybrid silica nanoparticles of 50 nm size, showing outstanding size homogeneity, a large surface area, and remarkable CO sorption/desorption capabilities. A wide battery of techniques was conducted ranging from spectroscopies such as: UV-Vis and IR, to microscopies (SEM, AFM) and CO sorption/desorption isotherms, thus with the purpose of the full characterization of the material. The bare SiO (50 nm) nanoparticles modified with 3-aminopropyl (triethoxysilane), APTES@SiO (50 nm), show a remarkable CO sequestration enhancement compared to the pristine material (0.
View Article and Find Full Text PDFWe have recently reported on the development and trypanocidal activity of a class of inhibitors of Trypanosome Alternative Oxidase (TAO) that are targeted to the mitochondrial matrix by coupling to lipophilic cations via C14 linkers to enable optimal interaction with the enzyme's active site. This strategy resulted in a much-enhanced anti-parasite effect, which we ascribed to the greater accumulation of the compound at the location of the target protein, i.e.
View Article and Find Full Text PDFA single layer of silica nanoparticles with an average size of ∼200 nm was deposited over the surface of pristine gold wafers, aided by (3-mercaptopropyl)trimethoxysilane. The nanoparticle immobilization was driven by covalent bonding rather than a self-assembly process, leading to a cluster-assembled material which has CO sensing features. Here, we show how this device can be used for CO physisorption and chemisorption.
View Article and Find Full Text PDFWe report the discovery of new 4-hydroxyphenyl phosphonium salt derivatives active in the submicromolar range (EC from 0.04 to 0.28 μM, SI > 10) against the protozoan parasite .
View Article and Find Full Text PDFDifferent types of two-photon absorbing (TPA) fluorophores have been synthesized and specifically functionalized to be incorporated in the structure of phosphorus dendrimers (highly branched macromolecules). The TPA fluorophores were included in the periphery as terminal functions, in the core, or in the branches of the dendrimer structures, respectively. Also the functionalization in two compartments (core and surface, or branches and surface) was achieved.
View Article and Find Full Text PDFPorous silicon nanoparticles as a novel platform in gene therapy, have shown to be an efficient vehicle for the delivery of nucleic acids in cells. For the first time, a family of porous silicon nanoparticles has been produced featuring an amino-acid functionalized cationic external surface aiming at pDNA complexation. The amino acid-based pDNA nanocarriers, displaying an average diameter of 295 nm, succeeded in transfection of HEK293 cells with an efficiency 300 times superior to "bare" porous silicon nanoparticles.
View Article and Find Full Text PDFThe alternative oxidase (AOX) is a ubiquitous terminal oxidase of plants and many fungi, catalyzing the four-electron reduction of oxygen to water alongside the cytochrome-based electron transfer chain. Unlike the classical electron transfer chain, however, the activity of AOX does not generate adenosine triphosphate but has functions such as thermogenesis and stress response. As it lacks a mammalian counterpart, it has been investigated intensely in pathogenic fungi.
View Article and Find Full Text PDFThe SAR of 4-hydroxybenzaldehyde inhibitors of the trypanosome alternative oxidase (TAO), a critical enzyme for the respiration of bloodstream forms of trypanosomes, was investigated. Replacing the aldehyde group with a methyl ester resulted in a 10-fold increase in TAO inhibition and activity against . Remarkably, two analogues containing the 2-hydroxy-6-methyl scaffold ( and ) displayed single digit nanomolar TAO inhibition, which constitute the most potent 4-alkoxybenzoic acid derivatives described to date.
View Article and Find Full Text PDFPorous silicon nanoparticles (pSiNP), modified to target dendritic cells (DC), provide an alternate strategy for the delivery of immunosuppressive drugs. Here, we aimed to develop a DC-targeting pSiNP displaying c-type lectin, dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN), and CD11c monoclonal antibodies. The in vivo tracking of these fluorescent DC-targeting nanoparticles was assessed in both C57BL/6 mice and common marmosets ( Callithrix jacchus) by intravenous injection (20 mg/kg).
View Article and Find Full Text PDFTandem uncaging systems in which a two-photon absorbing module and a cage moiety, linked via a phosphorous clip, that act together by Förster resonance energy transfer (FRET) have been developed. A library of these compounds, using different linkers and cages (7-nitroindolinyl or nitroveratryl) has been synthesized. The investigation of their uncaging and two-photon absorption properties demonstrates the scope and versatility of the engineering strategy towards efficient two-photon cages and reveals surprising cooperative and topological effects.
View Article and Find Full Text PDFImproved photo-labile protecting groups, with high sensitivity to two-photon excitation, are needed for the controlled release of drugs, as tools in neuroscience and physiology. Here we present a new modular approach to the design of caging groups based on photoinduced electron transfer from an electron-rich two-photon dye to an electron acceptor, followed by scission of an ester to release a carboxylic acid. Three different electron acceptors were tested: nitrobenzyl, phenacyl and pyridinium.
View Article and Find Full Text PDFA series of dyads that combine a photolabile protecting group (PPG) 4,5-dimethoxy-2-nitrobenzyl and different bis-donor or bis-acceptor dissymmetric chromophores acting as two-photon (2P) absorbers were synthesized. Even for low energy transfer efficiency from the 2PA subunit to the uncaging one, improvement of the 2P uncaging sensitivity in the NIR is achieved as compared to isolated PPG. Moreover enhancement of the 2PA response is achieved by tuning the electronic dissymmetry of the 2PA subunit and the arrangement of the complementary subunits in the dyads.
View Article and Find Full Text PDFTandem systems allowing enhanced two-photon (2P) absorption in a wavelength range permitting coupling of the primary excitation by energy transfer to an intramolecular cage known to have fragmentation properties suited to photolysis in neuroscience is demonstrated to lead to a 10-fold improvement in the 2P photolysis cross-section at experimentally compatible wavelengths.
View Article and Find Full Text PDF