Tungsten ditelluride (WTe2) is a transition metal dichalcogenide (TMD) with physical and electronic properties that make it attractive for a variety of electronic applications. Although WTe2 has been studied for decades, its structure and electronic properties have only recently been correctly described. We experimentally and theoretically investigate the structure, dynamics and electronic properties of WTe2, and verify that WTe2 has its minimum energy configuration in a distorted 1T structure (Td structure), which results in metallic-like transport.
View Article and Find Full Text PDFGraphene is theoretically a robust two-dimensional (2D) sp(2)-hybridized carbon material with high electrical conductivity and optical transparency. However, due to the existence of grain boundaries and defects, experimentally synthesized large-area polycrystalline graphene sheets are easily broken and can exhibit high sheet resistances; thus, they are not suitable as flexible transparent conductors. As described in this issue of ACS Nano, Tour et al.
View Article and Find Full Text PDFSubstitutional doping in graphene nanoribbons (GNRs) promises to enable specific tuning of their electronic properties. Recent work by Lv et al (2012 Nature Sci. Rep.
View Article and Find Full Text PDFHigh-resolution transmission electron microscopy studies show the dynamics of small graphene platelets on larger graphene layers. The platelets move nearly freely to eventually lock in at well-defined positions close to the edges of the larger underlying graphene sheet. While such movement is driven by a shallow potential energy surface described by an interplane interaction, the lock-in position occurs via edge-edge interactions of the platelet and the graphene surface located underneath.
View Article and Find Full Text PDFGraphitic nanowiggles (GNWs) are 1D systems with segmented graphitic nanoribbon GNR edges of varying chiralities. They are characterized by the presence of a number of possible different spin distributions along their edges and by electronic band-gaps that are highly sensitive to the details of their geometry. These two properties promote these experimentally observed carbon nanostructures as some of the most promising candidates for developing high-performance nanodevices.
View Article and Find Full Text PDFGraphitic nanowiggles (GNWs) are periodic repetitions of nonaligned finite-sized graphitic nanoribbon domains seamlessly stitched together without structural defects. These complex nanostructures have been recently fabricated [Cai et al., Nature (London) 466, 470 (2010)] and are here predicted to possess unusual properties, such as tunable band gaps and versatile magnetic behaviors.
View Article and Find Full Text PDFThe quantum transport properties of graphene nanoribbon networks are investigated using first-principles calculations based on density functional theory. Focusing on systems that can be experimentally realized with existing techniques, both in-plane conductance in interconnected graphene nanoribbons and tunneling conductance in out-of-plane nanoribbon intersections were studied. The characteristics of the ab initio electronic transport through in-plane nanoribbon cross-points is found to be in agreement with results obtained with semiempirical approaches.
View Article and Find Full Text PDFA first-principles approach is used to establish that substitutional phosphorus atoms within carbon nanotubes strongly modify the chemical properties of the surface, thus creating highly localized sites with specific affinity towards acceptor molecules. Phosphorus-nitrogen co-dopants within the tubes have a similar effect for acceptor molecules, but the P-N bond can also accept charge, resulting in affinity towards donor molecules. This molecular selectivity is illustrated in CO and NH3 adsorbed on PN-doped nanotubes, O2 on P-doped nanotubes, and NO2 and SO2 on both P- and PN-doped nanotubes.
View Article and Find Full Text PDFWe present a class of intramolecular graphene heterojunctions and use first-principles density functional calculations to describe their electronic, magnetic, and transport properties. The hybrid graphene and hybrid graphene nanoribbons have both armchair and zigzag features that are separated by an interface made up of pentagonal and heptagonal carbon rings. Contrary to conventional graphene sheets, the computed electronic density of states indicates that all hybrid graphene and nanoribbon systems are metallic.
View Article and Find Full Text PDFWe present a density functional theory study of the electronic structure, quantum transport and mechanical properties of recently synthesized phosphorus (P) and phosphorus-nitrogen (PN) doped single-walled carbon nanotubes. The results demonstrate that substitutional P and PN doping creates localized electronic states that modify the electron transport properties by acting as scattering centers. Nonetheless, for low doping concentrations (1 doping site per ∼200 atoms), the quantum conductance for metallic nanotubes is found to be only slightly reduced.
View Article and Find Full Text PDFArrays of multiwalled carbon nanotubes doped with phosphorus (P) and nitrogen (N) are synthesized using a solution of ferrocene, triphenyl-phosphine, and benzylamine in conjunction with spray pyrolysis. We demonstrate that iron phosphide (Fe(3)P) nanoparticles act as catalysts during nanotube growth, leading to the formation of novel PN-doped multiwalled carbon nanotubes. The samples were examined by high resolution electron microscopy and microanalysis techniques, and their chemical stability was explored by means of thermogravimetric analysis in the presence of oxygen.
View Article and Find Full Text PDFCarbon nanotube growth in the presence of nitrogen has been the subject of much experimental scrutiny, sparking intense debate about the role of nitrogen in the formation of diverse structural features, including shortened length, reduced diameters, and bamboo-like multilayered nanotubules. In this paper, the origin of these features is elucidated using a combination of experimental and theoretical techniques, showing that N acts as a surfactant during growth. N doping enhances the formation of smaller diameter tubes.
View Article and Find Full Text PDF