The CCN51 cocoa bean variety is known for being highly resistant to diseases and temperature variation and for having a relatively low cultivation risk for the producers. In this work, a computational and experimental study is performed to analyze the mass and heat transfer within the bean when dried by forced convection. A proximal composition analysis is conducted on the bean testa and cotyledon, and the distinct thermophysical properties are determined as a function of temperature for an interval between 40 and 70 °C.
View Article and Find Full Text PDFMultiple modes of atomization in electrosprays are affected by viscosity, surface tension and electrical conductivity of the semiconductor nanosuspensions. While the effect of gravity is dominant in the dripping mode, the electric field degenerates the electrospray mechanism into a microdripping mode that can potentially allow the deposition of semiconductor nanodots on a substrate. Drop size and frequency of droplet formation are obtained as functions of non-dimensional parameters, which agree well with experimental data.
View Article and Find Full Text PDFNanoscale patterns on rigid or flexible substrates are of considerable interest in modern nanophotonics and optoelectronics devices. Subwavelength structures are produced in this study by using a laser beam and microdroplets that carry nanoparticles to the deposition substrate. These droplets are generated from an aqueous suspension of nanoparticles by electrospray and dispensed through a conical hollow laser beam so that laser-droplet interactions occur immediately above the substrate surface.
View Article and Find Full Text PDFElectrosprays operate in several modes depending on the flow rate and electric potential. This allows the deposition of droplets containing nanoparticles into discrete nanodot arrays to fabricate various electronic devices. In this study, seven different suspensions with varying properties were investigated.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
November 2015
The impact of droplets on a deep pool has applications in cleaning up oil spills, spray cooling, painting, inkjet printing, and forensic analysis, relying on the changes in properties such as viscosity, interfacial tension, and density. Despite the exhaustive research on different aspects of droplet impact, it is not clear how liquid properties can affect the instabilities leading to Rayleigh jet breakup and number of daughter drops formed after its pinch-off. In this article, through systematic experiments we investigate the droplet impact phenomena by varying viscosity and surface tension of liquids as well as impact speeds.
View Article and Find Full Text PDF