Publications by authors named "Eduardo A Torre"

We describe a patient with leukemia undergoing chemotherapy who developed painful purpuric nodules of the digits. These findings were concerning for endocarditis (clinically) and angiokeratomas on gross histology. After extensive evaluation, we report the development of painful purpuric nodules as a likely side effect of the patient's therapeutic regimen (hydroxyurea, danorubicin, cytarabine, and methotrexate).

View Article and Find Full Text PDF

Molecular differences between individual cells can lead to dramatic differences in cell fate, such as death versus survival of cancer cells upon drug treatment. These originating differences remain largely hidden due to difficulties in determining precisely what variable molecular features lead to which cellular fates. Thus, we developed Rewind, a methodology that combines genetic barcoding with RNA fluorescence in situ hybridization to directly capture rare cells that give rise to cellular behaviors of interest.

View Article and Find Full Text PDF

Cellular plasticity describes the ability of cells to transition from one set of phenotypes to another. In melanoma, transient fluctuations in the molecular state of tumor cells mark the formation of rare cells primed to survive BRAF inhibition and reprogram into a stably drug-resistant fate. However, the biological processes governing cellular priming remain unknown.

View Article and Find Full Text PDF

Therapies that target signalling molecules that are mutated in cancers can often have substantial short-term effects, but the emergence of resistant cancer cells is a major barrier to full cures. Resistance can result from secondary mutations, but in other cases there is no clear genetic cause, raising the possibility of non-genetic rare cell variability. Here we show that human melanoma cells can display profound transcriptional variability at the single-cell level that predicts which cells will ultimately resist drug treatment.

View Article and Find Full Text PDF

While much is known about genes that promote aging, little is known about genes that protect against or prevent aging, particularly in human skin. The main objective of this study was to perform an unbiased, whole transcriptome search for genes that associate with intrinsic skin youthfulness. To accomplish this, healthy women (n = 122) of European descent, ages 18-89 years with Fitzpatrick skin type I/II were examined for facial skin aging parameters and clinical covariates, including smoking and ultraviolet exposure.

View Article and Find Full Text PDF

Intensive efforts are focused on identifying regulators of human pancreatic islet cell growth and maturation to accelerate development of therapies for diabetes. After birth, islet cell growth and function are dynamically regulated; however, establishing these age-dependent changes in humans has been challenging. Here, we describe a multimodal strategy for isolating pancreatic endocrine and exocrine cells from children and adults to identify age-dependent gene expression and chromatin changes on a genomic scale.

View Article and Find Full Text PDF

Visualizing the physical basis for molecular behaviour inside living cells is a great challenge for biology. RNAs are central to biological regulation, and the ability of RNA to adopt specific structures intimately controls every step of the gene expression program. However, our understanding of physiological RNA structures is limited; current in vivo RNA structure profiles include only two of the four nucleotides that make up RNA.

View Article and Find Full Text PDF

RNA is central to the flow of biological information. From transcription to splicing, RNA localization, translation, and decay, RNA is intimately involved in regulating every step of the gene expression program, and is thus essential for health and understanding disease. RNA has the unique ability to base-pair with itself and other nucleic acids to form complex structures.

View Article and Find Full Text PDF

RNA structure has important roles in practically every facet of gene regulation, but the paucity of in vivo structural probes limits current understanding. Here we design, synthesize and demonstrate two new chemical probes that enable selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) in living cells. RNA structures in human, mouse, fly, yeast and bacterial cells are read out at single-nucleotide resolution, revealing tertiary contacts and RNA-protein interactions.

View Article and Find Full Text PDF

Insulators are DNA sequences thought to be important for the establishment and maintenance of cell-type specific nuclear architecture. In Drosophila there are several classes of insulators that appear to have unique roles in gene expression. The mechanisms involved in determining and regulating the specific roles of these insulator classes are not understood.

View Article and Find Full Text PDF