Three-dimensional printing is widely becoming prevalent in various industries, including the automotive sector. As this technology advances, critical structures subjected to impact loads may also be produced using additive manufacturing. A key parameter in this technique is the infill density of the printed geometry, which directly affects mechanical properties such as strength, stiffness, and ductility.
View Article and Find Full Text PDFIn response to heightened environmental awareness, various industries, including the civil and automotive sector, are contemplating a shift towards the utilization of more sustainable materials. For adhesive bonding, this necessitates the exploration of materials derived from renewable sources, commonly denoted as bio-adhesives. This study focuses on a bio-adhesive L-joint, which is a commonly employed configuration in the automotive sector for creating bonded structural components with significant bending stiffness.
View Article and Find Full Text PDFThis study focuses on the prediction of the fracture mechanics behaviour of a highly flexible adhesive (with a tensile elongation of 90%), since this type of adhesive is becoming widely used in automotive structures due to their high elongation at break and damping capacity. Despite their extensive applications, the understanding of their fracture mechanics behaviour under varying loading rates and temperatures remains limited in the literature. In addition, current prediction models are also unable to accurately predict their behaviour due to the complex failure mechanism that such bonded joints have.
View Article and Find Full Text PDFThe use of thin-ply composite materials has rapidly increased due to their tailorable mechanical properties and design flexibility. Considering an adhesively bonded composite joint, peel stress stands out as a key contributor leading to failure among other primary stress factors. Therefore, the reinforcement of carbon fiber-reinforced polymer (CFRP) laminates throughout the thickness could be considered as an approach to improve the joint strength.
View Article and Find Full Text PDFAdhesive bonding has been increasingly employed in multiple industrial applications. This has led to a large industrial demand for faster, simpler, and cheaper characterization methods that allow engineers to predict the mechanical behavior of an adhesive with numerical models. Currently, these characterization processes feature a wide variety of distinct standards, specimen configurations, and testing procedures and require deep knowhow of complex data-reduction schemes.
View Article and Find Full Text PDFSemiconductor advancements demand greater integrated circuit density, structural miniaturization, and complex material combinations, resulting in stress concentrations from property mismatches. This study investigates the failure in two types of interfaces found in chip packages: silicon-epoxy mold compound (EMC) and polyimide-EMC. These interfaces were subjected to quasi-static and fatigue loading conditions.
View Article and Find Full Text PDFExamining crack propagation at the interface of bimaterial components under various conditions is essential for improving the reliability of semiconductor designs. However, the fracture behavior of bimaterial interfaces has been relatively underexplored in the literature, particularly in terms of numerical predictions. Numerical simulations offer vital insights into the evolution of interfacial damage and stress distribution in wafers, showcasing their dependence on material properties.
View Article and Find Full Text PDFThe use of adhesive bonding in diverse industries such as the automotive and aerospace sectors has grown considerably. In structural construction, adhesive joints provide a unique combination of low structural weight, high strength and stiffness, combined with a relatively simple and easily automated manufacturing method, characteristics that are ideal for the development of modern and highly efficient vehicles. In these applications, ensuring that the failure mode of a bonded joint is cohesive rather than adhesive is important since this failure mode is more controlled and easier to model and to predict.
View Article and Find Full Text PDFThe need for more sustainable adhesive formulations has led to the use of silane-based adhesives in different industrial sectors, such as the automotive industry. In this work, the mechanical properties of a dual cure two-component prototype adhesive which combined silylated polyurethane resin (SPUR) with standard epoxy resin was characterized under quasi-static conditions. The characterization process consisted of tensile bulk testing, to determine the Young's modulus, the tensile strength and the tensile strain to failure.
View Article and Find Full Text PDFThe need for more sustainable adhesive formulations has presented the possibility of using silane-based adhesives in the automotive industry. In this work, a dual-cure two-component silylated polyurethane resin (SPUR) adhesive was tested in single-lap joints, to assess in-joint behaviour at room temperature under quasi-static conditions for aluminium substrates. The effect of two different overlap lengths, 25 and 50 mm, was also considered.
View Article and Find Full Text PDFAdhesive bonding is widely seen as the most optimal method for joining composite materials, bringing significant benefits over mechanical joining, such as lower weight and reduced stress concentrations. Adhesively bonded composite joints find extensive applications where cyclic fatigue loading takes place, but this might ultimately lead to crack damage and safety issues. Consequently, it has become essential to study how these structures behave under fatigue loads and identify the remaining gaps in knowledge to give insights into new possibilities.
View Article and Find Full Text PDFThe adhesion of pressure-sensitive adhesives (PSAs) is a complex phenomenon that can be understood through the characterization of different properties, including viscoelastic, mechanical, and fracture properties. The aim of the present paper is to determine the viscoelastic behaviour of an acrylic PSA and place it in the viscoelastic window, as well as to determine the tensile strength of the material. Additionally, different numbers of stacked adhesive layers and two crosshead speeds were applied to characterize the tensile strength of the adhesive in the different conditions.
View Article and Find Full Text PDFThe investigation of the behaviour of adhesive joints under high strain rates is an active area of research, primarily due to the widespread use of adhesives in various industries, including automotive manufacturing. Understanding how adhesives perform when subjected to high strain rates is crucial for designing vehicle structures. Additionally, it is particularly important to comprehend the behaviour of adhesive joints when exposed to elevated temperatures.
View Article and Find Full Text PDFIt has been demonstrated that a possible solution to reducing delamination in a unidirectional composite laminate lies in the replacement of conventional carbon-fibre-reinforced polymer layers with optimized thin-ply layers, thus creating hybrid laminates. This leads to an increase in the transverse tensile strength of the hybrid composite laminate. This study investigates the performance of a hybrid composite laminate reinforced by thin plies used as adherends in bonded single lap joints.
View Article and Find Full Text PDFAdhesives are increasingly being employed in industrial applications as a replacement for traditional mechanical joining methods, since they enable improvements in the strength-to-weight ratio and lower the cost of the overall structures. This has led to a need for adhesive mechanical characterisation techniques that can provide the data needed to build advanced numerical models, allowing structural designers to expedite the adhesive selection process and grant precise optimisation of bonded connection performance. However, mechanically mapping the behaviour of an adhesive involves numerous different standards resulting in a complex network of various specimens, testing procedures and data reduction methods that concern techniques which are exceedingly complex, time-consuming, and expensive.
View Article and Find Full Text PDFIn the present paper, an exploratory study on the creep behavior of a pressure sensitive adhesive (PSA) is performed. After the determination of the quasi-static behavior of the adhesive for bulk specimens and single lap joints (SLJ), SLJs were subjected to creep tests at 80%, 60%, and 30% of their respective failure load. It was verified that the durability of the joints increases under static creep conditions as the load level decreases, with the second phase of the creep curve becoming more pronounced, where the strain rate is close to zero.
View Article and Find Full Text PDFCurrently, few experimental methods exist that enable the mechanical characterization of adhesives under high strain rates. One such method is the Split Hopkinson Bar (SHB) test. The mechanical characterization of adhesives is performed using different specimen configurations, such as Single Lap Joint (SLJ) specimens.
View Article and Find Full Text PDFThe aim of this work is to analyze the difference between silicone/composite and silicone/metal interphases, both in terms of water diffusion behavior and failure of the aged joints. For that, silicone joints with two different suhbstrates were prepared. The substrates were polybutylene terephthalate with 30% of short glass fiber (PBT-GF30) and 6082-T6 aluminum.
View Article and Find Full Text PDFThe use of carbon fibre reinforced polymer (CFRP) materials is increasing in many different industries, such as those operating in the aviation, marine, and automotive sectors. In these applications, composite parts are often joined with other composite or metallic parts, where adhesive bonding plays a key role. Unlike conventional joining methods, adhesive bonding does not add weight or require the drilling of holes, both of which are major sources of stress concentration.
View Article and Find Full Text PDFOver recent decades, the need to comply with environmental standards has become a concern in many industrial sectors. As a result, manufacturers have increased their use of eco-friendly, recycled, recyclable, and, overall, more sustainable materials and industrial techniques. One technique highly dependent on petroleum-based products, and at the edge of a paradigm change, is adhesive bonding.
View Article and Find Full Text PDFDue to their high elongation at failure and damping capacity, polyurethanes are one of the main types of adhesives used in automotive structures. However, despite the wide range of applications of adhesives, their fracture mechanics behavior is still poorly studied in the literature, especially when both the loading rate and ambient temperature change. Accordingly, the main aim of the current work is to deal with the research gap.
View Article and Find Full Text PDFThe presence of residual stresses in composite materials can significantly affect material performance, especially when integrated in bonded joints. These stresses, often generated during the cure process, can cause cracking and distortion of the material, and are caused by differences in the coefficients of thermal expansion or cure shrinkage. In the current research, multimaterial adherends combining carbon-fibre-reinforced polymer (CFRP) and aluminium in a single-lap joint (SLJ) configuration are analysed, allowing us to understand the effect of the thermal residual stresses, developed during the curing process, in the overall performance of the joints.
View Article and Find Full Text PDFThe automotive industry, driven by the desire to decrease the environmental impact of vehicles, is permanently seeking to develop lightweight structural components, which lead to lower gas emissions and energy consumption, reducing their carbon footprint. In parallel, adopting innovative, constructive solutions, which dispense non-recyclable and energy-intensive materials, can increase the footprint reduction. Thus, an increase in the use of renewable materials for structural applications, including wood and its by-products, has been observed over the last few decades.
View Article and Find Full Text PDFAdhesives are extensively used in the automotive and aeronautical industries as they enable the creation of durable and light weight joints, with exceptional strength to weight ratios. The constant search for the means of adapting the mechanical performance of adhesives to each application has led to the use of several types of fillers to change their properties. Following a study on the effect of inorganic fillers, i.
View Article and Find Full Text PDFThe use of modern structural adhesives provides a lightweight, practical, and high strength joining methodology, which is increasingly being adopted in the automotive and aeronautical sectors, among many others. However, the strict mechanical performance standards that must be met in these applications require a constant search for ways of improving the adhesives' behavior, which has led to the growing use of reinforcements as a way of improving the capabilities of bonded joints. The aim of this work was, thus, to analyze how the addition of inorganic fillers to the adhesive layer affects a joint's strength and its failure mechanism.
View Article and Find Full Text PDF