Despite improvements in ventricular assist devices (VAD) design, VAD-induced stroke rates remain remarkably high at 14-47%. We previously employed computational fluid dynamics (CFD) to propose adjustment of VAD outflow graft (VAD-OG) implantation to reduce stoke. Herein, we present an in-vitro model of cerebral vessel embolization in VAD-assisted circulation, and compare benchtop results to CFD predictions.
View Article and Find Full Text PDFStroke is the most devastating complication after ventricular assist device (VAD) implantation with a 19% incidence and 65% mortality in the pediatric population. Current pediatric VAD technology and anticoagulation strategies alone are suboptimal. VAD implantation assisted by computational methods (CFD) may contribute reducing the risk of cerebral embolization.
View Article and Find Full Text PDFStroke is the most devastating complication after ventricular assist device (VAD) implantation, with an incidence of 14%-47% despite improvements in device design and anticoagulation. This complication continues to limit the widespread implementation of VAD therapy. Patient-specific computational fluid dynamics (CFD) analysis may elucidate ways to reduce this risk.
View Article and Find Full Text PDFBiomechanical factors influencing the reduction of dislocated hips with the Pavlik harness in patients of Developmental Dysplasia of the Hip (DDH) were studied using a three-dimensional computer model simulating hip reduction dynamics in (1) subluxated and (2) fully dislocated hip joints. Five hip adductor muscles were identified as key mediators of DDH prognosis, and the non-dimensional force contribution of each in the direction necessary to achieve concentric hip reductions was determined. Results point to the adductor muscles as mediators of subluxated hip reductions, as their mechanical action is a function of the degree of hip dislocation.
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
December 2013
Background: Currently, mechanical support is the most promising alternative to cardiac transplantation. Ventricular assist devices (VADs) were originally used to provide mechanical circulatory support in patients awaiting planned heart transplantation ('bridge-to-transplantation' therapy). The success of short-term bridge devices led to clinical trials evaluating the clinical suitability of long-term support ('destination' therapy) with left ventricular assist devices (LVADs).
View Article and Find Full Text PDF