Protein database search engines are an integral component of mass spectrometry-based peptidomic analyses. Given the unique computational challenges of peptidomics, many factors must be taken into consideration when optimizing search engine selection, as each platform has different algorithms by which tandem mass spectra are scored for subsequent peptide identifications. In this study, four different database search engines, PEAKS, MS-GF+, OMSSA, and X! Tandem, were compared with and peptidomics data sets, and various metrics were assessed such as the number of unique peptide and neuropeptide identifications, and peptide length distributions.
View Article and Find Full Text PDFAnnu Rev Anal Chem (Palo Alto Calif)
June 2022
Neuropeptides (NPs), a unique class of neuronal signaling molecules, participate in a variety of physiological processes and diseases. Quantitative measurements of NPs provide valuable information regarding how these molecules are differentially regulated in a multitude of neurological, metabolic, and mental disorders. Mass spectrometry (MS) has evolved to become a powerful technique for measuring trace levels of NPs in complex biological tissues and individual cells using both targeted and exploratory approaches.
View Article and Find Full Text PDFExtended periods of bed rest and limb immobilization are required for healing post-injury or disease, yet disuse can result in significant muscle atrophy and decreased quality of life in older adults. Physical rehabilitation is commonly prescribed to recover these deficits, yet accumulation of reactive oxygen species and sustained rates of protein degradation persist during the rehabilitation period that can significantly delay or prevent recovery. Pericytes, considered the primary mesenchymal and vascular stromal cell in skeletal muscle, secrete beneficial factors that maintain baseline muscle mass, yet minimal information exists regarding the pericyte response to disuse and recovery.
View Article and Find Full Text PDFChronic itch can be extremely devastating and, in many cases, difficult to treat. One challenge in treating itch disorders is the limited understanding of the multitude of chemical players involved in the communication of itch sensation from the peripheral to the central nervous system. Neuropeptides are intercellular signaling molecules that are known to be involved in the transmission of itch signals from primary afferent neurons, which detect itch in the skin, to higher-order circuits in the spinal cord and brain.
View Article and Find Full Text PDF