Dent disease 1 (DD1) is a rare X-linked renal proximal tubulopathy characterized by low molecular weight proteinuria and variable degree of hypercalciuria, nephrocalcinosis and/or nephrolithiasis, progressing to chronic kidney disease. Although mutations in the electrogenic Cl-/H+ antiporter ClC-5, which impair endocytic uptake in proximal tubule cells, cause the disease, there is poor genotype-phenotype correlation and their contribution to proximal tubule dysfunction remains unclear. To further discover the mechanisms linking ClC-5 loss-of-function to proximal tubule dysfunction, we have generated novel DD1 cellular models depleted of ClC-5 and carrying ClC-5 mutants p.
View Article and Find Full Text PDFPrimary progressive multiple sclerosis is a poorly understood disease entity with no specific prognostic biomarkers and scarce therapeutic options. We aimed to identify disease activity biomarkers in multiple sclerosis by performing an RNA sequencing approach in peripheral blood mononuclear cells from a discovery cohort of 44 untreated patients with multiple sclerosis belonging to different clinical forms and activity phases of the disease, and 12 healthy control subjects. A validation cohort of 58 patients with multiple sclerosis and 26 healthy control subjects was included in the study to replicate the RNA sequencing findings.
View Article and Find Full Text PDFRestoration of kidney tubular epithelium following sublethal injury sequentially involves partial epithelial-mesenchymal transition (pEMT), proliferation, and further redifferentiation into specialized tubule epithelial cells (TECs). Because the immunosuppressant cyclosporine-A produces pEMT in TECs and inhibits the peptidyl-prolyl isomerase (PPIase) activity of cyclophilin (Cyp) proteins, we hypothesized that cyclophilins could regulate TEC phenotype. Here we demonstrate that in cultured TECs, CypA silencing triggers loss of epithelial features and enhances transforming growth factor β (TGFβ)-induced EMT in association with upregulation of epithelial repressors Slug and Snail.
View Article and Find Full Text PDFThe PI3K/Akt pathway is interconnected to protein kinase CK2, which directly phosphorylates Akt1 at S129. We have previously found that, in HK-2 renal cells, downregulation of the CK2 regulatory subunit β (shCK2β cells) reduces S129 Akt phosphorylation. Here, we investigated in more details how the different CK2 isoforms impact on Akt and other signaling pathways.
View Article and Find Full Text PDFThe scratch assay is an in vitro technique used to assess the contribution of molecular and cellular mechanisms to cell migration. The assay can also be used to evaluate therapeutic compounds before clinical use. Current quantification methods of scratch assays deal poorly with irregular cell-free areas and crooked leading edges which are features typically present in the experimental data.
View Article and Find Full Text PDFClear cell renal cell carcinoma (ccRCC) is the most common and aggressive subtype of renal cancer. STAT3 pathway is altered in these tumors and p-STAT3 Ser727 is an independent prognostic factor for ccRCC. Protein kinase CK2 is altered in different types of tumors and overexpression of CK2α is considered predictive of bad prognosis and metastatic risk.
View Article and Find Full Text PDFImmunosuppression based on calcineurin inhibitors (CNIs) has greatly improved organ transplantation, although subsequent nephrotoxicity significantly hinders treatment success. There are no currently available specific soluble biomarkers for CNI-induced nephrotoxicity and diagnosis relies on renal biopsy, which is costly, invasive and may cause complications. Accordingly, identification of non-invasive biomarkers distinguishing CNI-induced kidney tubular damage from that of other etiologies would greatly improve diagnosis and enable more precise dosage adjustment.
View Article and Find Full Text PDFSerial surveillance renal allograft biopsies have shown that early subclinical inflammation constitutes a risk factor for the development of interstitial fibrosis. More recently, it has been observed that persistent inflammation is also associated with fibrosis progression and chronic humoral rejection, two histological conditions associated with poor allograft survival. Treatment of subclinical inflammation with steroid boluses prevents progression of fibrosis and preserves renal function in patients treated with a cyclosporine-based regimen.
View Article and Find Full Text PDFRenal cell carcinoma (RCC), the third most prevalent urological cancer, claims more than 100,000 lives/year worldwide. The clear cell variant (ccRCC) is the most common and aggressive subtype of this disease. While commonly asymptomatic, more than 30% of ccRCC are diagnosed when already metastatic, resulting in a 95% mortality rate.
View Article and Find Full Text PDFAim Of The Study: To correlate hepatitis A virus cellular receptor (HAVCR)/kidney injury molecule-1 (KIM-1) expression in clear cell renal cell carcinoma (ccRCC) tumours with patient outcome and study the consequences of HAVCR/KIM-1 ectodomain shedding.
Methods: HAVCR/KIM-1 expression in ccRCC, oncocytomes, papillary carcinomas and unaffected tissue counterparts was evaluated. Minimal change disease and pre-clamping normal and ccRCC tissue biopsies were included.
Mechanisms of cyclosporine A (CsA)-induced nephrotoxicity were generally thought to be hemodynamic in origin; however, there is now accumulating evidence of a direct tubular effect. Although genomic and proteomic experiments by our group and others provided overall information on genes and proteins up- or down-regulated by CsA in proximal tubule cells (PTC), a comprehensive view of events occurring after CsA exposure remains to be described. For this purpose, we applied a pharmacologic approach based on the use of known activities of a large panel of potentially protective compounds and evaluated their efficacy in preventing CsA toxicity in cultured mouse PTC.
View Article and Find Full Text PDFThe use of cyclosporine A (CsA) is limited by its severe nephrotoxicity that includes reversible vasoconstrictor effects and proximal tubule cell injury, the latter associated whith chronic kidney disease progression. The mechanisms of CsA-induced tubular injury, mainly on the S3 segment, have not been completely elucidated. Kidney androgen-regulated protein (KAP) is exclusively expressed in kidney proximal tubule cells, interacts with the CsA-binding protein cyclophilin B and its expression diminishes in kidneys of CsA-treated mice.
View Article and Find Full Text PDFIn the present work we report the presence of protein kinase CK2 in lipid raft preparations from rat brain synaptosomes, obtained after detergent extraction and subsequent isolation of detergent-resistant membranes using sucrose gradient ultracentrifugation. Moreover, the phosphorylation of syntaxin-1 at Ser14, a specific CK2 target, has been detected in lipid rafts, as assessed by a phospho-specific antibody. Treatment with DMAT, a specific CK2 inhibitor, results in a decrease of syntaxin-1 Ser14 phosphorylation in lipid rafts, while the glutamate release from synaptosomes is enhanced.
View Article and Find Full Text PDFCyclophilins (Cyps), the intracellular receptors for Cyclosporine A (CsA), are responsible for peptidyl-prolyl cis-trans isomerisation and for chaperoning several membrane proteins. Those functions are inhibited upon CsA binding. Albeit its great benefits as immunosuppressant, the use of CsA has been limited by undesirable nephrotoxic effects, including sodium retention, hypertension, hyperkalemia, interstial fibrosis and progressive renal failure in transplant recipients.
View Article and Find Full Text PDFThe beta-subunit of eukaryotic translation initiation factor eIF2 is a substrate and a partner for protein kinase CK2. Surface plasmon resonance analysis shows that the truncated form corresponding to residues 138-333 of eIF2beta (eIF2beta-CT) interacts with CK2beta as efficiently as full length eIF2beta, whereas the form corresponding to residues 1-137, which contains the CK2 phosphorylation sites, (eIF2beta-NT) does not bind. The use of different mutants and truncated forms of CK2alpha allowed us to map the basic segment K74-K83 at the beginning of helix alphaC and residues R191R195K198 in the p + 1 loop as the main determinants for the binding to eIF2beta-CT of either the isolated CK2alpha subunit or the CK2 holoenzyme.
View Article and Find Full Text PDFCK2 (protein kinase CK2) is known to phosphorylate eIF2 (eukaryotic translation initiation factor 2) in vitro; however, its implication in this process in living cells has remained to be confirmed. The combined use of chemical inhibitors (emodin and apigenin) of CK2 together with transfection experiments with the wild-type of the K68A kinase-dead mutant form of CK2alpha evidenced the direct involvement of this protein kinase in eIF2beta phosphorylation in cultured HeLa cells. Transfection of HeLa cells with human wild-type eIF2beta or its phosphorylation site mutants showed Ser2 as the main site for constitutive eIF2beta phosphorylation, whereas phosphorylation at Ser67 seems more restricted.
View Article and Find Full Text PDF