Motivation: The interpretation of genomic data is crucial to understand the molecular mechanisms of biological processes. Protein structures play a vital role in facilitating this interpretation by providing functional context to genetic coding variants. However, mapping genes to proteins is a tedious and error-prone task due to inconsistencies in data formats.
View Article and Find Full Text PDFAge-associated myometrial dysfunction can prompt complications during pregnancy and labor, which is one of the factors contributing to the 7.8-fold increase in maternal mortality in women over 40. Using single-cell/single-nucleus RNA sequencing and spatial transcriptomics, we have constructed a cellular atlas of the aging myometrium from 186,120 cells across twenty perimenopausal and postmenopausal women.
View Article and Find Full Text PDFThe application of B-cell epitope identification to develop therapeutic antibodies and vaccine candidates is well established. However, the validation of epitopes is time-consuming and resource-intensive. To alleviate this, in recent years, multiple computational predictors have been developed in the immunoinformatics community.
View Article and Find Full Text PDFChromatin accessibility is essential in regulating gene expression and cellular identity, and alterations in accessibility have been implicated in driving cancer initiation, progression and metastasis. Although the genetic contributions to oncogenic transitions have been investigated, epigenetic drivers remain less understood. Here we constructed a pan-cancer epigenetic and transcriptomic atlas using single-nucleus chromatin accessibility data (using single-nucleus assay for transposase-accessible chromatin) from 225 samples and matched single-cell or single-nucleus RNA-sequencing expression data from 206 samples.
View Article and Find Full Text PDFCancer driver events refer to key genetic aberrations that drive oncogenesis; however, their exact molecular mechanisms remain insufficiently understood. Here, our multi-omics pan-cancer analysis uncovers insights into the impacts of cancer drivers by identifying their significant cis-effects and distal trans-effects quantified at the RNA, protein, and phosphoprotein levels. Salient observations include the association of point mutations and copy-number alterations with the rewiring of protein interaction networks, and notably, most cancer genes converge toward similar molecular states denoted by sequence-based kinase activity profiles.
View Article and Find Full Text PDFNat Struct Mol Biol
November 2022
Motivation: The analysis of cancer genomes provides fundamental information about its etiology, the processes driving cell transformation or potential treatments. While researchers and clinicians are often only interested in the identification of oncogenic mutations, actionable variants or mutational signatures, the first crucial step in the analysis of any tumor genome is the identification of somatic variants in cancer cells (i.e.
View Article and Find Full Text PDFThe protein structure field is experiencing a revolution. From the increased throughput of techniques to determine experimental structures, to developments such as cryo-EM that allow us to find the structures of large protein complexes or, more recently, the development of artificial intelligence tools, such as AlphaFold, that can predict with high accuracy the folding of proteins for which the availability of homology templates is limited. Here we quantify the effect of the recently released AlphaFold database of protein structural models in our knowledge on human proteins.
View Article and Find Full Text PDFUnderstanding the contribution of the host's genetic background to cancer immunity may lead to improved stratification for immunotherapy and to the identification of novel therapeutic targets. We investigated the effect of common and rare germline variants on 139 well-defined immune traits in ∼9000 cancer patients enrolled in TCGA. High heritability was observed for estimates of NK cell and T cell subset infiltration and for interferon signaling.
View Article and Find Full Text PDFOne of the key challenges of cancer biology is to catalogue and understand the somatic genomic alterations leading to cancer. Although alternative definitions and search methods have been developed to identify cancer driver genes and mutations, analyses of thousands of cancer genomes return a remarkably similar catalogue of around 300 genes that are mutated in at least one cancer type. Yet, many features of these genes and their role in cancer remain unclear, first and foremost when a somatic mutation is truly oncogenic.
View Article and Find Full Text PDFOur knowledge of cancer genomics exploded in last several years, providing us with detailed knowledge of genetic alterations in almost all cancer types. Analysis of this data gave us new insights into molecular aspects of cancer, most important being the amazing diversity of molecular abnormalities in individual cancers. The most important question in cancer research today is how to classify this diversity to identify subtypes that are most relevant for treatment and outcome prediction for individual patients.
View Article and Find Full Text PDFWe performed an extensive immunogenomic analysis of more than 10,000 tumors comprising 33 diverse cancer types by utilizing data compiled by TCGA. Across cancer types, we identified six immune subtypes-wound healing, IFN-γ dominant, inflammatory, lymphocyte depleted, immunologically quiet, and TGF-β dominant-characterized by differences in macrophage or lymphocyte signatures, Th1:Th2 cell ratio, extent of intratumoral heterogeneity, aneuploidy, extent of neoantigen load, overall cell proliferation, expression of immunomodulatory genes, and prognosis. Specific driver mutations correlated with lower (CTNNB1, NRAS, or IDH1) or higher (BRAF, TP53, or CASP8) leukocyte levels across all cancers.
View Article and Find Full Text PDFIdentifying molecular cancer drivers is critical for precision oncology. Multiple advanced algorithms to identify drivers now exist, but systematic attempts to combine and optimize them on large datasets are few. We report a PanCancer and PanSoftware analysis spanning 9,423 tumor exomes (comprising all 33 of The Cancer Genome Atlas projects) and using 26 computational tools to catalog driver genes and mutations.
View Article and Find Full Text PDFThe Cancer Genome Atlas (TCGA) has catalyzed systematic characterization of diverse genomic alterations underlying human cancers. At this historic junction marking the completion of genomic characterization of over 11,000 tumors from 33 cancer types, we present our current understanding of the molecular processes governing oncogenesis. We illustrate our insights into cancer through synthesis of the findings of the TCGA PanCancer Atlas project on three facets of oncogenesis: (1) somatic driver mutations, germline pathogenic variants, and their interactions in the tumor; (2) the influence of the tumor genome and epigenome on transcriptome and proteome; and (3) the relationship between tumor and the microenvironment, including implications for drugs targeting driver events and immunotherapies.
View Article and Find Full Text PDFAlternative splicing changes are frequently observed in cancer and are starting to be recognized as important signatures for tumor progression and therapy. However, their functional impact and relevance to tumorigenesis remain mostly unknown. We carried out a systematic analysis to characterize the potential functional consequences of alternative splicing changes in thousands of tumor samples.
View Article and Find Full Text PDFUnderstanding genetic events that lead to cancer initiation and progression remains one of the biggest challenges in cancer biology. Traditionally, most algorithms for cancer-driver identification look for genes that have more mutations than expected from the average background mutation rate. However, there is now a wide variety of methods that look for nonrandom distribution of mutations within proteins as a signal for the driving role of mutations in cancer.
View Article and Find Full Text PDFIn cancer immunology, somatic missense mutations have been mostly studied with regard to their role in the generation of neoantigens. However, growing evidence suggests that mutations in certain genes, such as CASP8 or TP53, influence the immune response against a tumor by other mechanisms. Identifying these genes and mechanisms is important because, just as the identification of cancer driver genes led to the development of personalized cancer therapies, a comprehensive catalog of such cancer immunity drivers will aid in the development of therapies aimed at restoring antitumor immunity.
View Article and Find Full Text PDFAutoimmune Regulator (AIRE) is a transcriptional regulator that is crucial for establishing central tolerance as illustrated by the Mendelian Autoimmune Polyendocrinopathy-Candidiasis-Ectodermal Dystrophy (APECED) syndrome associated with AIRE-inactivating recessive or dominant mutations. Polymorphisms in AIRE have been proposed to be implicated in genetic susceptibility to non-Mendelian organ specific autoimmune diseases. Because there is evidence that in predisposition to Graves' disease (GD) central tolerance is crucial, we investigated whether AIRE polymorphisms could modulate risk of GD.
View Article and Find Full Text PDFDespite their importance in maintaining the integrity of all cellular pathways, the role of mutations on protein-protein interaction (PPI) interfaces as cancer drivers has not been systematically studied. Here we analyzed the mutation patterns of the PPI interfaces from 10,028 proteins in a pan-cancer cohort of 5,989 tumors from 23 projects of The Cancer Genome Atlas (TCGA) to find interfaces enriched in somatic missense mutations. To that end we use e-Driver, an algorithm to analyze the mutation distribution of specific protein functional regions.
View Article and Find Full Text PDFPLoS Comput Biol
January 2015
The promise of personalized cancer medicine cannot be fulfilled until we gain better understanding of the connections between the genomic makeup of a patient's tumor and its response to anticancer drugs. Several datasets that include both pharmacologic profiles of cancer cell lines as well as their genomic alterations have been recently developed and extensively analyzed. However, most analyses of these datasets assume that mutations in a gene will have the same consequences regardless of their location.
View Article and Find Full Text PDF