Quasi-periodic pulsations (QPPs) are frequently detected in solar and stellar flares, but the underlying physical mechanisms are still to be ascertained. Here, we show microwave QPPs during a solar flare originating from quasi-periodic magnetic reconnection at the flare current sheet. They appear as two vertically detached but closely related sources with the brighter ones located at flare loops and the weaker ones along the stretched current sheet.
View Article and Find Full Text PDFA considerable fraction of the energy in a solar flare is released as suprathermal electrons; such electrons play a major role in energy deposition in the ambient atmosphere, and hence the atmospheric response to flare heating. Historically, the transport of these particles has been approximated through a deterministic approach in which first-order secular energy loss to electrons in the ambient target is treated as the dominant effect, with second-order diffusive terms (in both energy and angle) being generally either treated as a small correction or neglected. However, it has recently been pointed out that while neglect of diffusion in energy may indeed be negligible, diffusion in angle is of the same order as deterministic scattering and hence must be included.
View Article and Find Full Text PDFUsing the "enthalpy-based thermal evolution of loops" (EBTEL) model, we investigate the hydrodynamics of the plasma in a flaring coronal loop in which heat conduction is limited by turbulent scattering of the electrons that transport the thermal heat flux. The EBTEL equations are solved analytically in each of the two (conduction-dominated and radiation-dominated) cooling phases. Comparison of the results with typical observed cooling times in solar flares shows that the turbulent mean free path lies in a range corresponding to a regime in which classical (collision-dominated) conduction plays at most a limited role.
View Article and Find Full Text PDFThe acceleration of charged particles in magnetized plasmas is considered during turbulent multi-island magnetic reconnection. The particle acceleration model is constructed for an ensemble of islands which produce adiabatic compression of the particles. The model takes into account the statistical fluctuations in the compression rate experienced by the particles during their transport in the acceleration region.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
June 2002
The self-consistent description of Langmuir wave and ion-sound wave turbulence in the presence of an electron beam is presented for inhomogeneous nonisothermal plasmas. Full numerical solutions of the complete set of kinetic equations for electrons, Langmuir waves, and ion-sound waves are obtained for an inhomogeneous unmagnetized plasma. The results show that the presence of inhomogeneity significantly changes the overall evolution of the system.
View Article and Find Full Text PDF