The dynamics of a two-dimensional Bose-Einstein condensate in a presence of quantum fluctuations is studied. The properties of localized density distributions, quantum droplets (QDs), are analyzed by means of the variational approach. It is demonstrated that the super-Gaussian function gives a good approximation for profiles of fundamental QDs and droplets with nonzero vorticity.
View Article and Find Full Text PDFIt is shown that asymmetric waveguides with gain and loss can support a stable propagation of optical beams. This means that the propagation constants of modes of the corresponding complex optical potential are real. A class of such waveguides is found from a relation between two spectral problems.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
March 2006
Finite-dimensional dynamical models for solitons of the cubic-quintic complex Ginzburg-Landau equation (CGLE) are derived. The models describe the evolution of the pulse parameters, such as the maximum amplitude, pulse width, and chirp. A clear correspondence between attractors of the finite-dimensional dynamical systems and localized waves of the continuous dissipative system is demonstrated.
View Article and Find Full Text PDF