The recent interest in using ultrafast single-photon detectors in research and commercial applications has garnered significant attention from the scientific community. The dynamic event in the detection process consists of a photon causing local destruction of the order parameter, and then the applied current dissipates heat, bringing the material even more out of the superconducting state and then spiking a voltage peak in a measurement device. We investigated the role of superconducting and thermal parameters of the Generalized Time-Dependent Ginzburg-Landau (GTDGL) theory within the event of the first vortex penetration and the thermal dissipation in superconductors near the critical temperature.
View Article and Find Full Text PDFWithin the framework of the generalized time-dependent Ginzburg-Landau equations, we studied the influence of the magnetic self-field induced by the currents inside a superconducting sample driven by an applied transport current. The numerical simulations of the resistive state of the system show that neither material inhomogeneity nor a normal contact smaller than the sample width are required to produce an inhomogeneous current distribution inside the sample, which leads to the emergence of a kinematic vortex-antivortex pair (vortex street) solution. Further, we discuss the behaviors of the kinematic vortex velocity, the annihilation rates of the supercurrent, and the superconducting order parameters alongside the vortex street solution.
View Article and Find Full Text PDFIn this work, we studied the dynamics of the kinematic vortices (kV) in a mesoscopic superconductor under the influence of external applied magnetic fields () and transport currents (). A() phase diagram is determined. We show that the vortex dynamics are profoundly affected by the presence of constrictions and by.
View Article and Find Full Text PDFIn the present work, we have studied the crossover between type I and type II superconductivity on mesoscopic superconducting thin films by numerically solving the 3D Ginzburg-Landau equations. We determined the dependence on temperature of the critical Ginzburg-Landau parameter [Formula: see text], below which the superconductor behaves as type I for a given thickness d of the film. The effect of the sample dimensions on this crossover was also investigated.
View Article and Find Full Text PDFWe investigate the self-assembly of vortices in a type-II superconducting disk subjected to highly nonuniform confining potentials produced by inhomogeneous magnetic textures. Using a series of numerical experiments performed within the Ginzburg-Landau theory, we show that vortices can arrange spontaneously in highly nonuniform, defect-free crystals, reminiscent of conformal lattices, even though the strict conditions for the conformal crystal are not fulfilled. These results contradict continuum-limit theory, which predicts that the order of a nonuniform crystal is unavoidably frustrated by the presence of topological defects.
View Article and Find Full Text PDF