Publications by authors named "Edson C Silva-Filho"

Bacterial nanocellulose (BNC) has attracted considerable attention in the field of biomedical engineering due to its potential for use in bone regeneration applications. The present study investigates the in vitro and in vivo efficacy of bacterial nanocellulose (BNC) combined with calcium and cerium ions (BNC-Ce:CaP) in bone regeneration applications. XRD analysis confirmed the presence of monetite and hydroxyapatite phases in BNC-CaP, while BNC-Ce:CaP revealed an additional brushite phase.

View Article and Find Full Text PDF

Internal curing is a process based on the addition of materials that function as water reservoirs in cementitious media. Superabsorbent hydrogels are an alternative that can be used as an internal curing agent, as they have the ability to absorb and release water in a controlled manner. In the present work, superabsorbent hydrogels based on crosslinked polyacrylamide in the presence of starch and sugarcane bagasse ash (SCBA) were developed and applied to mortars as an internal curing agent.

View Article and Find Full Text PDF

Superabsorbent polymers (PSAs) have been extensively studied to act as internal curing agents in cementitious materials, as they have the characteristic of absorbing and releasing water in a controlled manner, which can contribute to the hydration process of a cementitious medium during its consolidation. Thus, hydrogels consisting of polyacrylamide (PAAm), pectin (Pec) and rice husk ash (RHA) were synthesized to be applied in cementitious matrices. In addition, the PSAs were characterized by FTIR, SEM, and XRD.

View Article and Find Full Text PDF

Diclofenac is an emerging contaminant widely detected in water and has had adverse effects on the biota. In this study, the adsorbents were prepared by reacting tetradecyl-(C), hexadecyl-(C), and octadecyltrimethylammonium (C) bromides with sodium vermiculite (Na-Ver) and used for the removal of the first time for diclofenac sodium from aqueous solution. Synthesis was carried out in a microwave-assisted reactor operating at 50 °C for 5 min, using proportions of organic salts in 100 and 200% of the phyllosilicate cation exchange capacity.

View Article and Find Full Text PDF

The continuous increase in bacterial resistance requires the study and development of new biocompatible antibacterial materials. Galactomannan gum was extracted from endosperms of Dimorphandra gardneriana seeds, modified through quaternization reactions (with NaOH/CHPTAC), and evaluated for antimicrobial activity. Four quaternized derivatives were obtained (QG1-QG4).

View Article and Find Full Text PDF

The review highlights significant advances in delivery systems, with an emphasis on the use of cashew gum (CG), a natural polysaccharide extracted from Anacardium occidentale L., recognized for its remarkable biodegradability and versatility. CG has a wide range of applications spanning sectors such as food, pharmaceuticals, agriculture, and biotechnology.

View Article and Find Full Text PDF

Tannins are compounds present in forage plants that, in small quantities in the diet of ruminants, produce protein complexes that promote passage through the rumen and use in the intestine. This study tested the hypothesis that beeswax (BW) and carnauba wax (CW) lipid matrices are effective encapsulants for creating bypass lysine (Lys) for ruminants, with tannin extracted from the hay source enhancing material protection. Microencapsulated systems were made using the fusion-emulsification technique with a 2:1 shell-to-core ratio and four tannin levels (0%, 1%, 2%; 3%).

View Article and Find Full Text PDF

In this work, chitosan/collagen-based membranes loaded with 2,3-dihydrobenzofuran (2,3-DHB) were developed through a simple solvent-casting procedure for use in the treatment of cutaneous Leishmaniasis. The obtained membranes were characterized by elemental analysis, FTIR, TG, DSC, and XRD. Porosity, swelling, mechanical properties, hydrophilicity, and antioxidant activity were analyzed.

View Article and Find Full Text PDF

The presence of drugs in aquatic environments has been considered a global challenge and several remediation technologies have been proposed, including adsorption. In this study, new diclofenac adsorbents were obtained from the reaction of sodium magadiite (Na-Mag) with surfactants dodecylpyridinium chloride hydrate (CpyCl) and hexadecylpyridinium chloride monohydrate (CpyCl)), 1-hexadecyltrimethylammonium bromide (CBr), and dodecyltrimethylammonium bromide (CBr). The synthesis was carried out in the microwave at 50 °C for 5 min using surfactant amounts of 100% and 200% in relation to the cation exchange capacity of Na-Mag.

View Article and Find Full Text PDF

Hydroxyapatite can combine with polysaccharide originating biomaterials with special applications in the biomedical field. In this review, the synthesis of (nano)composites is discussed, focusing on natural polysaccharides such as alginate, chitosan, and pectin. In this way, advances in recent years in the development of preparing materials are revised and discussed.

View Article and Find Full Text PDF

Little information is available in the literature on the use of cactus pear meal (CPM) in poultry diets; therefore, it is important to evaluate diets that provide excellent performance and lower production costs. Our objective was to study the use of Miúda CPM in the diets of laying hens. In the first study, two diets for male and female chicks were used-1: 80% reference diet + 20% Miúda cactus pear meal (CPM) and 2: 80% reference diet + 20% Gigante cactus pear meal (CPM).

View Article and Find Full Text PDF

The insertion of hydrophobic and hydrophilic chains in the chitosan molecule can improve its antibacterial activity, expanding its range of application in several areas of medical-pharmaceutical sciences. Thus, this work aimed to increase the antibacterial activity of chitosan through the modification reaction with phthalic anhydride (QF) and subsequent reaction with ethylenediamine (QFE). The chitosan and derivatives obtained were characterized by elemental analysis, C Nuclear Magnetic Resonance (C NMR), X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and Thermogravimetric Analysis (TG), where it was possible to prove the chemical modification.

View Article and Find Full Text PDF

Hydrogels from natural sources are attracting increasing interest due to their ability to protect biologically active molecules. Starch extracted from cassava tubers is a promising material for synthesizing these hydrogels. Copolymerization of cassava gum and incorporation of chlorhexidine digluconate (CLX) into the hydrogels is confirmed by changes in the crystallographic profile, as observed through X-ray diffraction, and a shift in the 1000 cm band in the Fourier-transform infrared spectroscopy spectrum.

View Article and Find Full Text PDF

The use of hydrogels helpsthe production of plants in drought-stress environments. Thus, this work evaluated using different hydrogels to minimize drought stress in soybean cultivation. The treatments employed two different hydrogels, one already commercialized and the other produced with cashew gum (Anacardium occidentale), five levels (0, 30, 60, 120, and 240 mg pot) of the hydrogels, and two levels of drought stress in sandy soil.

View Article and Find Full Text PDF

The incorporation of polymeric components into aerogels based on clay produces a significant improvement in the physical and thermal properties of the aerogels. In this study, clay-based aerogels were produced from a ball clay by incorporation of angico gum and sodium alginate using a simple, ecologically acceptable mixing method and freeze-drying. The compression test showed a low density of spongy material.

View Article and Find Full Text PDF

The present work explores the esterification reaction in the polysaccharide extracted from the seaweed Gracilaria birdiae and investigates its antioxidant potential. The reaction process was conducted with phthalic anhydride at different reaction times (10, 20 and 30 min), using a molar ratio of 1:2 (polymer: phthalic anhydride). Derivatives were characterized by FTIR, TGA, DSC and XRD.

View Article and Find Full Text PDF

Hydrogels are structures that have value for application in the area of tissue engineering because they mimic the extracellular matrix. Naturally obtained polysaccharides, such as chitosan (CH) and cashew gum, are materials with the ability to form polymeric networks due to their physicochemical properties. This research aimed to develop a scaffold based on chitosan and phthalated cashew tree gum and test it as a support for the growth of human mesenchymal stem cells.

View Article and Find Full Text PDF

Cashew tree gum is a polysaccharide material highly available in the Northeast region of Brazil. It has been explored for biocompatibility with human tissues. This research aimed to describe the synthesis and characterization of cashew gum/hydroxyapatite scaffold and evaluate the possible cytotoxicity in murine adipose-derived stem cells (ADSCs) cultures.

View Article and Find Full Text PDF

Insulin is one of the most important drugs in the clinical treatment of diabetes. There is growing interest in oral insulin administration as it mimics the physiological pathway and potentially reduces side effects associated with subcutaneous injection. In this study, a nanoparticulate system was developed using acetylated cashew gum (ACG) and chitosan by the polyelectrolyte complexation method, for oral administration of insulin.

View Article and Find Full Text PDF

A nanocomposite hydrogel has potentially applicability in the induction of osteogenesis. The hydrogel was synthesized using 1% gelatin methacrylate (GelMA), a biodegradable and bioactive polymer containing the structure of gelatin, denatured collagen derived from the extracellular bone matrix, and 6% laponite (Lap), a synthetic phyllosilicate of nanosized particles. Initially, 0.

View Article and Find Full Text PDF

Anthocyanins are one of the natural pigments that humanity has employed the most and can substitute synthetic food dyes, which are considered toxic. They are responsible for most purple, blue, and red pigment nuances in tubers, fruits, and flowers. However, they have some limitations in light, pH, oxygen, and temperature conditions.

View Article and Find Full Text PDF

Chicha gum is a natural polymer obtained from the plant. The hydroxyl groups of its structure have a chemical affinity to form hydrogels, which favors the association with biologically active molecules, such as nerolidol. This association improves the biological properties and allows the material to be used in drug delivery systems.

View Article and Find Full Text PDF

Nanotechnology is a crucial technology in recent years has resulted in new and creative applications of nanomedicine. Polymeric nanoparticles have increasing demands in pharmaceutical applications and require high reproducibility, homogeneity, and control over their properties. Work explores the use of cashew phthalate gum (PCG) as a particle-forming polymer.

View Article and Find Full Text PDF

The effects of the replacement of dry ground corn (GC) with corn-grain silage rehydrated with water (RCSwater), cactus pear mucilage (RCSmucilage), and whey (RCSwhey) on the growth, physicochemical composition, and fatty acid profile of goat kids’ meat were investigated. Thirty-two crossbred goat kids (16.4 ± 2.

View Article and Find Full Text PDF

The aim of the present work was to modify the exuded gum of Sterculia striata tree by an amination reaction. The viscosity and zero potential of the chicha gum varied as a function of pH. The modification was confirmed by X-ray diffraction (XRD), infrared spectroscopy (FTIR), size exclusion chromatography (SEC), zeta potential, thermogravimetric analysis (TG), and differential scanning calorimetry (DSC).

View Article and Find Full Text PDF