Spectrochim Acta A Mol Biomol Spectrosc
February 2013
In this paper we have studied the 4-hydroxyl-2,5 dimethylphenyl-benzophenone. Also, it was analyzed the vibrational assignment (FT-IR and Raman) in conjunction with computational results. The conformational analysis showed three barrier heights where two are due to the dihedral rotation and the other one is attributed to hydroxyl rotation.
View Article and Find Full Text PDFJ Mol Graph Model
April 2010
Molecular orbital calculations were carried out on a set of 28 non-imidazole H(3) antihistamine compounds using the Hartree-Fock method in order to investigate the possible relationships between electronic structural properties and binding affinity for H(3) receptors (pK(i)). It was observed that the frontier effective-for-reaction molecular orbital (FERMO) energies were better correlated with pK(i) values than highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy values. Exploratory data analysis through hierarchical cluster (HCA) and principal component analysis (PCA) showed a separation of the compounds in two sets, one grouping the molecules with high pK(i) values, the other gathering low pK(i) value compounds.
View Article and Find Full Text PDF