Publications by authors named "Edouard Veilly"

Canister integrity and radionuclides retention is of prime importance for assessing the long term safety of nuclear waste stored in engineered geologic depositories. A comparative investigation of the interaction of uranyl ion with three different mineral surfaces has thus been undertaken in order to point out the influence of surface composition on the adsorption mechanism(s). Periodic DFT calculations using plane waves basis sets with the GGA formalism were performed on the TiO(2)(110), Al(OH)(3)(001) and Ni(111) surfaces.

View Article and Find Full Text PDF

The sorption of uranyl cations and water molecules on the basal (001) face of gibbsite was studied by combining vibrational and fluorescence spectroscopies together with density functional theory (DFT) computations. Both the calculated and experimental values of O-H bond lengths for the gibbsite bulk are in good agreement. In the second part, water sorption with this surface was studied to take into account the influence of hydration with respect to the uranyl adsorption.

View Article and Find Full Text PDF

The syntheses of the chloro complexes [Ru(eta5-C5R5)Cl(L)] (R = H, Me; L = phosphinoamine ligand) (1a-d) have been carried out by reaction of [(eta5-C5H5)RuCl(PPh3)2] or {(eta5-C5Me5)RuCl}4 with the corresponding phosphinoamine (R,R)-1,2-bis((diisopropylphosphino)amino)cyclohexane), R,R-dippach, or 1,2-bis(((diisopropylphosphino)amino)ethane), dippae. The chloride abstraction reactions from these compounds lead to different products depending on the starting chlorocomplex and the reaction conditions. Under argon atmosphere, chloride abstraction from [(eta5-C5Me5)RuCl(R,R-dippach)] with NaBAr'4 yields the compound [(eta5-C5Me5)Ru(kappa3P,P'-(R,R)-dippach)][BAr'4] (2b) which exhibits a three-membered ring Ru-N-P by a new coordination form of this phosphinoamine.

View Article and Find Full Text PDF