Publications by authors named "Edouard I Severing"

Lupinus mutabilis is an under-domesticated legume species from the Andean region of South America. It belongs to the New World lupins clade, which groups several lupin species displaying large genetic variation and adaptability to highly different environments. L.

View Article and Find Full Text PDF

The appropriate timing of flowering is crucial for plant reproductive success. Studies of the molecular mechanism of flower induction in the model plant showed long days and vernalization as major environmental promotive factors. has an obligate vernalization requirement that has not been studied at the molecular genetics level.

View Article and Find Full Text PDF

Background: Miscanthus sinensis is a high yielding perennial grass species with great potential as a bioenergy feedstock. One of the challenges that currently impedes commercial cellulosic biofuel production is the technical difficulty to efficiently convert lignocellulosic biomass into biofuel. The development of feedstocks with better biomass quality will improve conversion efficiency and the sustainability of the value-chain.

View Article and Find Full Text PDF

Plants adjust their development and architecture to small variations in ambient temperature. In a time in which temperatures are rising world-wide, the mechanism by which plants are able to sense temperature fluctuations and adapt to it, is becoming of special interest. By performing RNA-sequencing on two Arabidopsis accession and one Brassica species exposed to temperature alterations, we showed that alternative splicing is an important mechanism in ambient temperature sensing and adaptation.

View Article and Find Full Text PDF

Most of the above ground tissues in higher plants originate from stem cells located in the shoot apical meristem (SAM). Several plant species can suffer from spontaneous stem cell arrest resulting in lack of further shoot development. In Brassica oleracea this SAM arrest is known as blindness and occurs in an unpredictable manner leading to considerable economic losses for plant raisers and farmers.

View Article and Find Full Text PDF

Many important crops have received little attention by the scientific community, either because they are not considered economically important or due to their large and complex genomes. De novo transcriptome assembly, using next-generation sequencing data, is an attractive option for the study of these orphan crops. In spite of the large amount of sequencing data that can be generated, there is currently a lack of tools which can effectively help molecular breeders and biologists to mine this type of information.

View Article and Find Full Text PDF

Noccaea caerulescens is an extremophile plant species belonging to the Brassicaceae family. It has adapted to grow on soils containing high, normally toxic, concentrations of metals such as nickel, zinc, and cadmium. Next to being extremely tolerant to these metals, it is one of the few species known to hyperaccumulate these metals to extremely high concentrations in their aboveground biomass.

View Article and Find Full Text PDF

Background: Brassica rapa is an economically important crop species. During its long breeding history, a large number of morphotypes have been generated, including leafy vegetables such as Chinese cabbage and pakchoi, turnip tuber crops and oil crops.

Results: To investigate the genetic variation underlying this morphological variation, we re-sequenced, assembled and annotated the genomes of two B.

View Article and Find Full Text PDF

Background: Plants are sessile organisms that deal with their -sometimes adverse- environment in well-regulated ways. Chromatin remodeling involving SWI/SNF2-type ATPases is thought to be an important epigenetic mechanism for the regulation of gene expression in different developmental programs and for integrating these programs with the response to environmental signals. In this study, we report on the role of chromatin remodeling in Arabidopsis with respect to the variability of growth and gene expression in relationship to environmental conditions.

View Article and Find Full Text PDF

Several genome-wide studies demonstrated that alternative splicing (AS) significantly increases the transcriptome complexity in plants. However, the impact of AS on the functional diversity of proteins is difficult to assess using genome-wide approaches. The availability of detailed sequence annotations for specific genes and gene families allows for a more detailed assessment of the potential effect of AS on their function.

View Article and Find Full Text PDF

Background: Large-scale analyses of genomics and transcriptomics data have revealed that alternative splicing (AS) substantially increases the complexity of the transcriptome in higher eukaryotes. However, the extent to which this complexity is reflected at the level of the proteome remains unclear. On the basis of a lack of conservation of AS between species, we previously concluded that AS does not frequently serve as a mechanism that enables the production of multiple functional proteins from a single gene.

View Article and Find Full Text PDF

Background: Alternative splicing (AS) is a widespread phenomenon in higher eukaryotes but the extent to which it leads to functional protein isoforms and to proteome expansion at large is still a matter of debate. In contrast to animal species, for which AS has been studied extensively at the protein and functional level, protein-centered studies of AS in plant species are scarce. Here we investigate the functional impact of AS in dicot and monocot plant species using a comparative approach.

View Article and Find Full Text PDF