Publications by authors named "Edoardo Proverbio"

This study explores the potential of natural and recycled materials to enhance the fire behavior of eco-friendly intumescent coatings, compared to a traditional ammonium polyphosphate (APP)-based one. To achieve this, cork, halloysite clay, and recycled glass were evaluated as natural fillers and sustainable components within the coating formulation. The aim was to reduce the reliance on synthetic materials and minimize the environmental impact while maintaining fire performance.

View Article and Find Full Text PDF

Acoustic emission (AE) is well suited for the real-time monitoring and detection of damage in reinforced concrete structures. In this study, loading/unloading cycles up to failure were applied on three different full-scale beams, each with varying defect morphologies. An intensity analysis method was employed to assess the damage sensitivities of the defective structures under stress conditions.

View Article and Find Full Text PDF

This research examined the response of flax-fiber-reinforced composites (FFRCs) to simulated outdoor conditions involving repeated exposure to salt fog and drying. The study investigated the effect of cycles on the toughness of the FFRCs. To achieve this, the composites were exposed to humidity (salt fog) for 10 days, followed by 18 days of drying in cycles.

View Article and Find Full Text PDF

The spillage of oil causes severe and long-lasting impacts on both the environment and human life. It is crucial to carefully reconsider the methods and techniques currently employed to recover spilled oil in order to prevent any possible secondary pollution and save time. Therefore, the techniques used to recover spilled oil should be readily available, highly responsive, cost-effective, environmentally safe, and, last but not least, they should have a high sorption capacity.

View Article and Find Full Text PDF

In this paper, the tailoring of superhydrophobic surfaces on AA6082 aluminum alloy by chemical etching in an HF/HCl solution, followed by silane self-assembling, was applied for enhanced corrosion protection in the marine field. In particular, different etching times were considered in order to optimize the treatment effect. The results indicate that all the prepared surfaces, after silanization, were characterized by superhydrophobic behavior with a contact angle higher than 150°.

View Article and Find Full Text PDF

The article presents the results of three-point bending tests carried out for samples cut from full-size fibre-cement boards subjected to typical and exceptional conditions. The tests were carried out with the simultaneous acquisition of acoustic emission signals. It has been noted that some factors significantly deteriorate the strength parameters of the samples as well as cause the occurrence of differences in the number of acoustic emission signals of various classes and their energy parameters.

View Article and Find Full Text PDF

In the shipbuilding sector (cruises, ferries, etc.), the design and control constraints applied to improve the fire safety conditions of naval vessels are acquiring important relevance. Research activities have aimed at enhancing the fire resistance of structures and surface coatings to make ships' working environments safer, trying to combine performance, durability and low costs.

View Article and Find Full Text PDF

Superhydrophobic surfaces on 6082 aluminum alloy substrates are tailored by low-cost chemical surface treatments coupled to a fluorine-free alkyl-silane coating deposition. In particular, three different surface treatments are investigated: boiling water, HF/HCl, and HNO/HCl etching. The results show that the micro-nano structure and the wetting behavior are greatly influenced by the applied surface texturing treatment.

View Article and Find Full Text PDF

This work is focused on the design and preparation of polymer inclusion membranes (PIMs) for potential applications for stannous cation sequestration from water. For this purpose, the membranes have been synthesized employing two polymeric matrices, namely, polyvinylchloride (PVC) and cellulose triacetate (CTA), properly enriched with different plasticizers. The novelty here proposed relies on the modification of the cited PIMs by selected extractants expected to interact with the target cation in the membrane bulk or onto its surface, as well as in the evaluation of their performances in the sequestration of tin(II) in solution through chemometric tools.

View Article and Find Full Text PDF

Dental implant biomaterials are expected to be in contact with living tissues, therefore their toxicity and osseointegration ability must be carefully assessed. In the current study, the wettability, cytotoxicity, and genotoxicity of different alumina-zirconia-titania composites were evaluated. The surface wettability determines the biological event cascade in the bioceramic/human living tissues interface.

View Article and Find Full Text PDF

To meet the increasing demands for effective cleanup technologies to deal with the oil spill accidents that significantly affect the ecological and environmental systems, promising composite materials based on carbon nanotubes containing silicone foams were investigated. Pump oil, kerosene, and virgin naphtha had been used to assess, during sorption tests, foams behavior. Test results highlighted the advantage of the hydrophobic and oleophilic behavior of carbon nanotubes, and their high mechanical strength for oil spill recovery application was studied.

View Article and Find Full Text PDF

This work investigates the application of novel sorption materials to heat-powered desalination systems. Two ionic liquids 1-ethyl-3-methylimidazolium acetate (Emim-Ac) and 1-ethyl-3-methylimidazolium methanesulfonate (Emim-Oms) were impregnated in two silica supports, namely, Syloid AL-1FP and Syloid 72FP. Emim-Ac and Emim-Oms composite sorbents have been compared on morphology, water vapor sorption equilibrium, and heat of sorption.

View Article and Find Full Text PDF

We describe the hydrothermal synthesis of zeolite Linde type A (LTA) submicrometer particles using a water-soluble amphiphilic block copolymer of poly(dimethylsiloxane)-b-poly(ethylene oxide) as a template. The formation and growth of the intermediate aggregates in the presence of the diblock copolymer have been monitored by small-angle X-ray scattering (SAXS) above the critical micellar concentration at a constant temperature of 45 °C. The early stage of the growth process was characterized by the incorporation of the zeolite LTA components into the surface of the block copolymer micellar aggregates with the formation of primary units of 4.

View Article and Find Full Text PDF

The experiences that in 1758 led John Dollond to create the first achromatic telescope highlighted the serious difficulties related to the production of lenses with a correction for chromatic aberration. These difficulties were due to the lack of suitable tools for measuring the refraction index and for verifying the curvatures of the lenses of such optical instruments. To this was added what was perhaps the greatest difficulty: i.

View Article and Find Full Text PDF