In this paper we propose a robust fuzzy clustering model, the STAR-based Fuzzy C-Medoids Clustering model with Noise Cluster, to define territorial partitions of the European regions (NUTS2) according to the workplaces mobility trends for places of work provided by Google with reference to the whole COVID-19 pandemic period. The clustering model takes into account both temporal and spatial information by means of the autoregressive temporal and spatial coefficients of the STAR model. The proposed clustering model through the noise cluster is capable of neutralizing the negative effects of noisy data.
View Article and Find Full Text PDFInt J Environ Res Public Health
February 2021
The parametric model introduced by Lee and Carter in 1992 for modeling mortality rates in the USA was a seminal development in forecasting life expectancies and has been widely used since then. Different extensions of this model, using different hypotheses about the data, constraints on the parameters, and appropriate methods have led to improvements in the model's fit to historical data and the model's forecasting of the future. This paper's main objective is to evaluate if differences between models are reflected in different mortality indicators' forecasts.
View Article and Find Full Text PDFThis article includes a unique data set of a balanced daily (Monday, Tuesday and Wednesday) for oil and natural gas volatility and the oil rich economies' stock markets for Saudi Arabia, Qatar, Kuwait, Abu Dhabi, Dubai, Bahrain and Oman, using daily data over the period spanning Oct. 18, 2006-July 30, 2015. Additionally, we have included unique GAUSS codes for estimating the spillover asymmetric multiplicative error model (SAMEM) with application to Petroleum-Based Stock Market.
View Article and Find Full Text PDF