Publications by authors named "Edoardo Garrone"

Detailed analysis of recently reported variable-temperature IR (VTIR) spectra of carbon monoxide adsorbed in alkaline zeolites shows how, not only the corresponding values of standard adsorption enthalpy ( ) and entropy ( ) can be obtained, but also the thermodynamic values of molar entropy and enthalpy which characterize the adsorbed gas phase. In addition, it is shown that the so obtained molar entropy data can lead to new insights into soft molecular modes, which would be hardly accessible by conventional IR spectroscopic techniques.

View Article and Find Full Text PDF

The current state of the art in the application of variable-temperature IR (VTIR) spectroscopy to the study of (i) adsorption sites in zeolites, including dual cation sites; (ii) the structure of adsorption complexes and (iii) gas-solid interaction energy is reviewed. The main focus is placed on the potential use of zeolites for gas separation, purification and transport, but possible extension to the field of heterogeneous catalysis is also envisaged. A critical comparison with classical IR spectroscopy and adsorption calorimetry shows that the main merits of VTIR spectroscopy are (i) its ability to provide simultaneously the spectroscopic signature of the adsorption complex and the standard enthalpy change involved in the adsorption process; and (ii) the enhanced potential of VTIR to be site specific in favorable cases.

View Article and Find Full Text PDF

The removal of simazine from both pure water and solute-bearing well water was studied by adsorption on two solids: zeolite H-Y from the commercial Na form and porous silica tailored by the sol-gel technique. The pH dependence of the amount adsorbed in a closed system at constant total simazine content as well as the apparent isotherms of adsorption was measured in all four cases. The low ion content of natural water suffices to alter the adsorption features in the case of silica, but not with zeolite H-Y.

View Article and Find Full Text PDF

The simple means adopted for investigating H-Y zeolite acidity in water is the pH-dependence of the amount of a basic molecule adsorbed under isochoric conditions, a technique capable of yielding, under equilibrium conditions, an estimate of the pKa value of the involved acidic centres: the behaviour with temperature of adsorbed amounts yields instead some information on thermodynamics. Simazine (Sim, 2-chloro-4,6-bis(ethylamino)-s-triazine) was chosen as an adsorbate because its transverse dimension (7.5 Å) is close to the opening of the supercage in the faujasite structure of H-Y (7.

View Article and Find Full Text PDF

In this work, we studied the removal of simazine from both a model and well water by adsorption on two different adsorbents: zeolite H-Y and a porous silica made in the laboratory by using the sol-gel technique. The pH dependence of the adsorption process and the isotherms and pseudo-isotherms of adsorption were studied. Moreover, an iterative process of simazine removal from both the model and well water, which allowed us to bring the residual simazine concentration below the maximum concentration (0.

View Article and Find Full Text PDF

The hydrothermal synthesis of a nanosized cobalt doped aluminum phosphate CoAPO-5 (CoAPO-5-N) in a water-surfactant-organic solvent mixture (emulsion method) is reported, along with its physico-chemical characterization and comparison with a sample obtained by conventional synthesis (CoAPO-5-C). Both XRD (X-ray Diffraction) peak widths and FESEM (Field Emission Scanning Electron Microscopy) pictures of CoAPO-5-N are in agreement with a nanoscale structure, although the aggregation of nanoparticles occurred. EDX analysis shows a more homogeneous distribution of cobalt in CoAPO-5-N, not attainable by conventional synthesis.

View Article and Find Full Text PDF

Samples of the activated microporous aluminophosphate Co-APO-5, featuring ca. 20% of Co(3+) cations, when immersed in water evolve molecular oxygen at room temperature in an endothermic process, without the need for either light or a sacrificial reactant. Successive drying of the sample at temperatures around 520 K releases molecular hydrogen, with recovery of the initial conditions.

View Article and Find Full Text PDF

Outer Co(II) species in Co-ZIF-67 coordinate molecular oxygen both from the gas phase and liquid water, through an adsorption process (presumably yielding in both cases surface superoxo species), respectively weak and reversible (gas phase), and strong and irreversible (liquid); in the latter case desorption is however brought about by illumination with solar light comprising the UV component.

View Article and Find Full Text PDF

An IR spectroscopy study is reported on the nature and accessibility of external and internal surfaces of single-walled alumino-silicate nanotubes (NTs) of the imogolite type. NTs form bundles with hexagonal symmetry, in which three kinds of surfaces may be figured out: surface A is the inner surface of NTs; surface B is that between three aligned NTs in the hexagonal packing; and surface C arises from slit mesopores between bundles. Two materials were considered: proper imogolite (IMO, (OH)3Al2O3SiOH) and its methylated analogue, (Me-IMO, (OH)3Al2O3SiCH3).

View Article and Find Full Text PDF

We report the first use of cobalt aluminophosphate (CoAPO5) as a water oxidation catalyst. A decrease in the overvoltage by about 0.2 V with respect to catalyst free FTO has been observed.

View Article and Find Full Text PDF

The development of an "artificial leaf" that collects energy in the same way as a natural one is one of the great challenges for the use of renewable energy and a sustainable development. To avoid the problem of intermittency in solar energy, it is necessary to design systems that directly capture CO(2) and convert it into liquid solar fuels that can be easily stored. However, to be advantageous over natural leaves, it is necessary that artificial leaves have a higher solar energy-to-chemical fuel conversion efficiency, directly provide fuels that can be used in power-generating devices, and finally be robust and of easy construction, for example, smart, cheap and robust.

View Article and Find Full Text PDF

Three hematite samples were synthesized by precipitation from a FeCl₃ solution under controlled pH and temperature conditions in different morphology and dimensions: (i) microsized (average diameter 1.2 μm); (ii) submicrosized (250 nm); and (iii) nanosized (90 nm). To gain insight into reactions potentially occurring in vivo at the particle-lung interface following dust inhalation, several physicochemical features relevant to pathogenicity were measured (free radical generation in cell-free tests, metal release, and antioxidant depletion), and cellular toxicity assays on human lung epithelial cells (A549) and murine alveolar macrophages (MH-S) were carried out (LDH release, apoptosis detection, DNA damage, and nitric oxide synthesis).

View Article and Find Full Text PDF

Proton-donor ability of carboxylic groups incorporated by co-condensation into SBA-15 and ethane-bridged periodic mesoporous organosilica (PMO) has been studied through IR spectroscopy by dosing ammonia, which forms reversibly COO(-) groups and NH(4)(+) ions. The related equilibrium constants, determined by elaboration of IR data, reveal a lower reactivity of -COOH groups at the surface of PMO than on SBA-15, when the two samples have been outgassed at the same temperature. This finding is interpreted in terms of different dielectric constants and intermolecular interactions engaged with the surface species.

View Article and Find Full Text PDF

Imogolite-like nanotubes have been synthesised in which SiCH(3) groups have been introduced in place of the SiOH groups that naturally occur at the inner surface of imogolite, an alumino-silicate with formula (OH)(3)Al(2)O(3)SiOH, forming nanotubes with inner and outer diameter of 1.0 and 2.0 nm, respectively.

View Article and Find Full Text PDF

Interaction of gaseous ammonia with a NH(4)-ZSM-5 zeolite (Si/Al=11.5) was studied by means of infrared (IR) spectroscopy both at constant ambient temperature and in the temperature range 373-573 K. H-bonding of NH(3) molecules to the NH(4) (+) species takes place.

View Article and Find Full Text PDF

Interaction between adsorbed hydrogen and the coordinatively unsaturated Mg(2+) and Co(2+) cationic centres in Mg-MOF-74 and Co-MOF-74, respectively, was studied by means of variable-temperature infrared (VTIR) spectroscopy. Perturbation of the H(2) molecule by the cationic adsorbing centre renders the H--H stretching mode IR-active at 4088 and 4043 cm(-1) for Mg-MOF-74 and Co-MOF-74, respectively. Simultaneous measurement of integrated IR absorbance and hydrogen equilibrium pressure for spectra taken over the temperature range of 79-95 K allowed standard adsorption enthalpy and entropy to be determined.

View Article and Find Full Text PDF

Adsorption of carbon dioxide on H-ZSM-5 zeolite (Si:Al=11.5:1) was studied by means of variable-temperature FT-IR spectroscopy, in the temperature range of 310-365 K. The adsorbed CO(2) molecules interact with the zeolite Brønsted-acid OH groups bringing about a characteristic red-shift of the O-H stretching band from 3610 cm(-1) to 3480 cm(-1).

View Article and Find Full Text PDF

Carboxylic groups have been incorporated in ethane-bridged PMO by one-pot synthesis using a triblock copolymer as template; their pK(a) measured by titration is higher than that of same groups incorporated in SBA-15.

View Article and Find Full Text PDF

A mesoporous silica nanoparticle-based intracellular cysteine delivery system that could be induced and regulated by cell-produced natural antioxidants was synthesized.

View Article and Find Full Text PDF

To understand the effect of the commercial processing of diatomaceous earths (DEs) on their ultimate surface structure and potential toxicity, we investigated the influence of the industrial processing and the nature of the deposit. Two flux calcined specimens from different deposits, DE/1-FC and DE/2-FC, and the simply calcined sample DE/1-C, from the same deposit as DE/1-FC, were compared in both their bulk and their surface properties. X-ray diffraction (XRD) analysis in a heating chamber revealed the presence of cristobalite in all samples, more abundant on the flux calcined ones.

View Article and Find Full Text PDF

Variable temperature FT-IR spectroscopy (in the range of 298-380 K) is used to study the thermodynamics of formation of Ca(2+)...

View Article and Find Full Text PDF

Purpose: To evaluate the ability of heparin coating to inhibit Double J stent encrustation and compare it with the classic polyurethane Double J stent.

Patients And Methods: The study involved five patients with bilateral obstructions, who required bilateral ureteral Double J stent placement. Every patient received a heparin-coated Double J stent and a traditional polyurethane Double J stent for 1 month.

View Article and Find Full Text PDF

Herein we report on the mechanism of formation of a hybrid phenylene-bridged hexagonally ordered mesoporous organosilica with crystal-like walls (CW-Ph-HMM). Electron microscopy and X-Ray diffraction studies indicate that the formation of CW-Ph-HMM involves the surfactant-mediated hydrothermal transformation of an amorphous organosilica precursor and that the final product is hierarchically ordered. Significantly, the material is in the form of submicrometre-thick sheets that consist of co-aligned aggregates of needle-like particles (up to 500 nm in length and 50 nm in width).

View Article and Find Full Text PDF

Transmission FT-IR spectroscopy allowed us to monitor the deuteration of wafers of chitosan aerogel and xerogel by D2O vapor at room temperature. The complete deuteration of the alcohol and amine groups of the aerogel (surface area 175 m2 g(-1) as measured by N2 volumetry) confirmed the high accessibility of the functional groups of the polymer. The xerogel (surface area 5 m2 g(-1)) was only partially deuterated in more severe conditions.

View Article and Find Full Text PDF

Three samples of SBA-15 functionalised with -(CH(2))(3)COOH groups have been prepared by co-condensation, starting from solutions of TEOS and 4-(triethoxysilyl)butyronitrile, acting as -(CH(2))(3)COOH precursor, of different molar compositions. Materials were characterised by X-ray diffraction, nitrogen adsorption, and FT-IR spectroscopy. The pK(a) and the acidic capacity were measured for all samples by potentiometric titration.

View Article and Find Full Text PDF