Publications by authors named "Edoardo Dell'Armi"

Electro-bioremediation offers a promising approach for eliminating persistent pollutants from groundwater since allows the stimulation of biological dechlorinating activity, utilizing renewable electricity for process operation and avoiding the injection of chemicals into aquifers. In this study, a two-chamber microbial electrolysis cell has been utilized to achieve both reductive and oxidative degradation of tetrachloroethane (TeCA). By polarizing the graphite granules cathodic chamber at -650 mV vs the standard hydrogen electrode and employing a mixed metal oxide (MMO) counter electrode for oxygen production, the reductive and oxidative environment necessary for TeCA removal has been established.

View Article and Find Full Text PDF

Chlorinated solvents still represent an environmental concern that requires sustainable and innovative bioremediation strategies. This study describes the microbiome composition of a novel bioelectrochemical system (BES) based on sequential reductive/oxidative dechlorination for complete perchloroethylene (PCE) removal occurring in two separate but sequential chambers. The BES has been tested under various feeding compositions [i.

View Article and Find Full Text PDF

Trichloroethylene (TCE) and more in general chlorinated aliphatic hydrocarbons (CAHs) can be removed from a contaminated matrix thanks to microorganisms able to perform the reductive dechlorination reaction (RD). Due to the lack of electron donors in the contaminated matrix, CAHs' reductive dechlorination can be stimulated by fermentable organic substrates, which slowly release molecular hydrogen through their fermentation. In this paper, three different electron donors constituted by lactate, hydrogen, and a biocathode of a bioelectrochemical cell have been studied in TCE dechlorination batch experiments.

View Article and Find Full Text PDF

A membraneless microbial electrolysis cell (MEC) has been developed for perchloroethylene (PCE) removal through the reductive dechlorination reaction. The MEC consists of a tubular reactor of 8.24 L equipped with a graphite-granule working electrode which stimulates dechlorinating microorganisms while a graphite-granule cylindrical envelopment contained in a plastic mesh constituted the counter electrode of the MEC.

View Article and Find Full Text PDF

Groundwater remediation is one of the main objectives to minimize environmental impacts and health risks. Chlorinated aliphatic hydrocarbons contamination is prevalent and presents particularly challenging scenarios to manage with a single strategy. Different technologies can manage contamination sources and plumes, although they are usually energy-intensive processes.

View Article and Find Full Text PDF