Histone deacetylase 6 (HDAC6) is increasingly recognized for its potential in targeted disease therapy. This study delves into the mechanistic and structural nuances of HDAC6 inhibition by difluoromethyl-1,3,4-oxadiazole (DFMO) derivatives, a class of non-hydroxamic inhibitors with remarkable selectivity and potency. Employing a combination of nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography-mass spectrometry (LC-MS) kinetic experiments, comprehensive enzymatic characterizations, and X-ray crystallography, we dissect the intricate details of the DFMO-HDAC6 interaction dynamics.
View Article and Find Full Text PDFHistone deacetylases (HDACs) participate with histone acetyltransferases in the modulation of the biological activity of a broad array of proteins, besides histones. Histone deacetylase 6 is unique among HDAC as it contains two catalytic domains, an -terminal microtubule binding region and a C-terminal ubiquitin binding domain. Most of its known biological roles are related to its protein lysine deacetylase activity in the cytoplasm.
View Article and Find Full Text PDFHistone deacetylase 6 (HDAC6) is an attractive drug development target because of its role in the immune response, neuropathy, and cancer. Knockout mice develop normally and have no apparent phenotype, suggesting that selective inhibitors should have an excellent therapeutic window. Unfortunately, current HDAC6 inhibitors have only moderate selectivity and may inhibit other HDAC subtypes at high concentrations, potentially leading to side effects.
View Article and Find Full Text PDFHistone deacetylase 6 (HDAC6) is a peculiar HDAC isoform whose expression and functional alterations have been correlated with a variety of pathologies such as autoimmune disorders, neurodegenerative diseases, and cancer. It is primarily a cytoplasmic protein, and its deacetylase activity is focused mainly on nonhistone substrates such as tubulin, heat shock protein (HSP)90, Foxp3, and cortactin, to name a few. Selective inhibition of HDAC6 does not show cytotoxic effects in healthy cells, normally associated with the inhibition of Class I HDAC isoforms.
View Article and Find Full Text PDFCancer still represents a "nightmare" worldwide, causing annually millions of victims. Several antiproliferative molecules are currently used as drugs market and offer a pharmaceutical opportunity for attenuating and treating tumor manifestations. In this context, natural sources have a relevant role, since they provide the 60% of currently-used anticancer agents.
View Article and Find Full Text PDF