A Li-ion battery combines a cathode benefitting from Sn and MnO with high sulfur content, and a lithiated anode including fumed silica, few layer graphene (FLG) and amorphous carbon. This battery is considered a scalable version of the system based on lithium-sulfur (Li-S) conversion, since it exploits at the anode the Li-ion electrochemistry instead of Li-metal stripping/deposition. Sn and MnO are used as cathode additives to improve the electrochemical process, increase sulfur utilization, while mitigating the polysulfides loss typical of Li-S devices.
View Article and Find Full Text PDFThe search for safe electrolytes to promote the application of lithium-sulfur (Li-S) batteries may be supported by the investigation of viscous glyme solvents. Hence, electrolytes using nonflammable tetraethylene glycol dimethyl ether added by lowly viscous 1,3-dioxolane (DOL) are herein thoroughly investigated for sustainable Li-S cells. The electrolytes are characterized by low flammability, a thermal stability of ∼200 °C, ionic conductivity exceeding 10 S cm at 25 °C, a Li transference number of ∼0.
View Article and Find Full Text PDFA solid polymer electrolyte has been developed and employed in lithium-metal batteries of relevant interest. The material includes crystalline poly(ethylene glycol)dimethyl ether (PEGDME), LiTFSI and LiNO salts, and a SiO ceramic filler. The electrolyte shows ionic conductivity more than 10 S cm at room temperature and approaching 10 S cm at 60 °C, a Li -transference number exceeding 0.
View Article and Find Full Text PDF