From sea shores to the abysses of the deep ocean, marine ecosystems have provided humanity with valuable medicinal resources. The use of marine organisms is discussed in ancient pharmacopoeias of different times and geographic regions and is still deeply rooted in traditional medicine. Thanks to present-day, large-scale bioprospecting and rigorous screening for bioactive metabolites, the ocean is coming back as an untapped resource of natural compounds with therapeutic potential.
View Article and Find Full Text PDFRheumatoid arthritis (RA) is an invalidating chronic autoimmune disorder characterized by joint inflammation and progressive bone damage. Dietary intervention is an important component in the treatment of RA to mitigate oxidative stress, a major pathogenic driver of the disease. Alongside traditional sources of antioxidants, microalgae-a diverse group of photosynthetic prokaryotes and eukaryotes-are emerging as anti-inflammatory and immunomodulatory food supplements.
View Article and Find Full Text PDFBackground: Microalgae are emerging hosts for the sustainable production of lutein, a high-value carotenoid; however, to be commercially competitive with existing systems, their capacity for lutein sequestration must be augmented. Previous attempts to boost microalgal lutein production have focussed on upregulating carotenoid biosynthetic enzymes, in part due to a lack of metabolic engineering targets for expanding lutein storage.
Results: Here, we isolated a lutein hyper-producing mutant of the model green microalga Chlamydomonas reinhardtii and characterized the metabolic mechanisms driving its enhanced lutein accumulation using label-free quantitative proteomics.
Background: The light-harvesting antennae of photosystem (PS) I and PSII are pigment-protein complexes responsible of the initial steps of sunlight conversion into chemical energy. In natural environments plants are constantly confronted with the variability of the photosynthetically active light spectrum. PSII and PSI operate in series but have different optimal excitation wavelengths.
View Article and Find Full Text PDFIn natural ecosystems, plants compete for space, nutrients and light. The optically dense canopies limit the penetration of photosynthetically active radiation and light often becomes a growth-limiting factor for the understory. The reduced availability of photons in the lower leaf layers is also a major constraint for yield potential in canopies of crop monocultures.
View Article and Find Full Text PDFPhotosynthetic microbes are gaining increasing attention as heterologous hosts for the light-driven, low-cost production of high-value recombinant proteins. Recent advances in the manipulation of unicellular algal genomes offer the opportunity to establish engineered strains as safe and viable alternatives to conventional heterotrophic expression systems, including for their use in the feed, food, and biopharmaceutical industries. Due to the relatively small size of their genomes, algal chloroplasts are excellent targets for synthetic biology approaches, and are convenient subcellular sites for the compartmentalized accumulation and storage of products.
View Article and Find Full Text PDFMetabolic fluctuations in chloroplasts and mitochondria can trigger retrograde signals to modify nuclear gene expression. Mobile signals likely to be involved are reactive oxygen species (ROS), which can operate protein redox switches by oxidation of specific cysteine residues. Redox buffers, such as the highly reduced glutathione pool, serve as reservoirs of reducing power for several ROS-scavenging and ROS-induced damage repair pathways.
View Article and Find Full Text PDF