Optimizing electrolyte formulations is key to improving performance of Li-/Na-ion batteries, where transport properties (diffusion coefficient, viscosity) and permittivity need to be predicted as functions of temperature, salt concentration and solvent composition. More efficient and reliable simulation models are urgently needed, owing to the high cost of experimental methods and the lack of united-atom molecular dynamics force fields validated for electrolyte solvents. Here the computationally efficient TraPPE united-atom force field is extended to be compatible with carbonate solvents, optimizing the charges and dihedral potential.
View Article and Find Full Text PDFFluid flow through a bed of solid particles is an important process that occurs in full-scale water treatment operations. The Carman-Kozeny model remains highly popular for estimating the resistance across the bed. It is common practice to use particle shape factors in fixed bed state to match the predicted drag coefficient with experimentally obtained drag coefficients.
View Article and Find Full Text PDFAccurate prediction of alkane phase transitions involving solids is needed to prevent catastrophic pipeline blockages, improve lubrication formulations, smart insulation, and energy storage, as well as bring fundamental understanding to processes such as artificial morphogenesis. However, simulation of these transitions is challenging and therefore often omitted in force field development. Here, we perform a series of benchmarks on seven representative molecular dynamics models (TraPPE, PYS, CHARMM36, L-OPLS, COMPASS, Williams, and the newly optimized Williams 7B), comparing with experimental data for liquid properties, liquid-solid, and solid-solid phase transitions of two prototypical alkanes, -pentadecane (C) and -hexadecane (C).
View Article and Find Full Text PDFInjection of CO deep underground into porous rocks, such as saline aquifers, appears to be a promising tool for reducing CO emissions and the consequent climate change. During this process CO displaces brine from individual pores and the sequence in which this happens determines the efficiency with which the rock is filled with CO at the large scale. At the pore scale, displacements are controlled by the balance of capillary, viscous and inertial forces.
View Article and Find Full Text PDFThe swelling behavior of clay minerals is an important issue in industrial processes and environmental applications. Mixed-layer clay minerals containing a smectite fraction, such as rectorite, are neglected even though they could swell and exist in nature widely. The hydration of rectorite has not been well comprehended even though they are meaningful to mineralogy and industry.
View Article and Find Full Text PDFMolecular dynamics simulations have been performed to study the interfacial tension of CO2 and brine for a range of temperatures between 303 and 393 K and pressures from 2 to 50 MPa. The ions involved in this study are Na(+), Ca(2+), and Cl(-). The results indicate that the interfacial tension decreases with increasing pressure under any temperature condition but increases linearly with the molality of the salt solution.
View Article and Find Full Text PDFThe spontaneous imbibition of liquid in nanopores of different roughness is investigated using coarse grain molecular dynamics (MD) simulation. The numerical model is presented and the simplifying assumptions are discussed in detail. The molecular-kinetic theory introduced by Blake is used to describe the effect of dynamic contact angle on fluid imbibition.
View Article and Find Full Text PDFAsphaltenes are known as the 'cholesterol' of crude oil. They form nano-aggregates, precipitate, adhere to surfaces, block rock pores and may alter the wetting characteristics of mineral surfaces within the reservoir, hindering oil recovery efficiency. Despite a significant research effort, the structure, aggregation and deposition of asphaltenes under flowing conditions remain poorly understood.
View Article and Find Full Text PDFWe report small angle neutron scattering (SANS) experiments on two crude oils. Analysis of the high-Q SANS region has probed the asphaltene aggregates in the nanometer length scale. We find that the radius of gyration decreases with increasing temperature.
View Article and Find Full Text PDFRecently there has been a great deal of attention, from researchers both in academia and in industry, focused on the rheological properties of solutions of viscoelastic wormlike micelles formed by surfactants. It is particularly vital to understand the properties of these solutions with regard to their flow in porous media, given their application to the recovery of hydrocarbons from subterranean formations. In this study a realistic mesoscopic Brownian dynamics model has been utilized to investigate the flow of viscoelastic surfactant (VES) fluid through individual pores with sizes of around one micron.
View Article and Find Full Text PDFSimulations of mixed cationic/anionic wormlike micellar systems have been carried out for a wide range of compositions, including pure anionic and cationic systems. It was found that the wormlike micelle formed by only cationic surfactant molecules is unstable and transforms to a set of small spherical micelles. Adding anionic surfactants with a short hydrophobic chain (only eight carbon atoms) results in stable wormlike micelles.
View Article and Find Full Text PDFDisorder of intercalated surfactant molecules in clay minerals causes gradual swelling, rather than commonly assumed swelling in discrete steps.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
March 2002
We present a lattice Boltzmann study of the flow of a binary fluid where the fluid components have different viscosities. For this purpose, a microscopic interaction model (due to Shan & Chen) is used. The model is validated for Poiseuille flow of layered immiscible binary fluids and the dispersion of a capillary wave.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
August 2004
Viscous fingering occurs in the interfacial zone between two fluids confined between two plates with a narrow gap (Hele-Shaw geometry) when a highly viscous fluid is displaced by a fluid with relatively low viscosity. Using a mesoscopic approach--the lattice Boltzmann method--we investigate the dynamics of spatially extended Hele-Shaw flow under conditions corresponding to various experimental systems by tuning the 'surface tension' and the reactivity between the two fluids. We discuss the onset of the fingering instability (dispersion relation), analyse the structural properties (characterization of the interface) and the dynamical properties (growth of the mixing zone) of the Hele-Shaw systems, and show the effect of reactive processes on the structure of the interfacial zone.
View Article and Find Full Text PDFThe concentration dependence of the viscosity is studied for suspensions of approximately hard, i.e., short-range repulsive, platelets.
View Article and Find Full Text PDF