Background: In previous studies, we demonstrated the downregulation of several miRNAs from the DLK1-DIO3 genomic region in papillary thyroid carcinoma (PTC). Due to the large number of miRNAs within this region, the individual contribution of these molecules to PTC development and progression remains unclear.
Objective: In this study, we aimed to clarify the contribution of DLK1-DIO3-derived miRNAs to PTC.
Background: Among other structures, nuclear grooves are vastly found in papillary thyroid carcinoma (PTC). Considering that the application of artificial intelligence in thyroid cytology has potential for diagnostic routine, our goal was to develop a new supervised convolutional neural network capable of identifying nuclear grooves in Diff-Quik stained whole-slide images (WSI) obtained from thyroid fineneedle aspiration.
Methods: We selected 22 Diff-Quik stained cytological slides with cytological diagnosis of PTC and concordant histological diagnosis.
Thyroid cancer is the most prevalent endocrine malignancy, comprising multiple types of cancer, with distinct clinical-pathological characteristics. The oncogenesis of thyroid cancer is related to genetic alterations in MAPK signaling that induce proliferation and modulate noncoding genes, such as microRNAs and long noncoding RNAs. In this context, CRISPR/Cas9 emerges as a potential tool to modify gene sequence and modulate gene expression in thyroid cancer cell lines.
View Article and Find Full Text PDFAnaplastic thyroid cancer (ATC) is a rare and lethal form of thyroid cancer that requires urgent investigation of new molecular targets involved in its aggressive biology. In this context, the overactivation of Polycomb Repressive Complex 2/EZH2, which induces chromatin compaction, is frequently observed in aggressive solid tumors, making the EZH2 methyltransferase a potential target for treatment. However, the deregulation of chromatin accessibility is yet not fully investigated in thyroid cancer.
View Article and Find Full Text PDFPapillary thyroid carcinoma (PTC) is the most common neoplasm of the endocrine system and has an excellent long-term prognosis, with low rates of distant metastatic disease. Although infrequent, there are cases of deaths directly related to PTC, especially in patients with metastatic disease, and the factors that could be associated with this unfavorable outcome remain a major challenge in clinical practice. Recently, research into genetic factors associated with PTC has gained ground, especially mutations in the TERT promoter and BRAF gene.
View Article and Find Full Text PDFHeterogeneous nuclear ribonucleoproteins (hnRNPs) are essential players in the regulation of gene expression. The majority of the twenty different hnRNP proteins act through the modulation of pre-mRNA splicing. Most have been shown to regulate the expression of critical genes for the progression of tumorigenic processes and were also observed to be overexpressed in several types of cancer.
View Article and Find Full Text PDFThe presence of a bidirectional risk for metachronous carcinomas among women with thyroid and breast cancer is well established. However, the underlying risk factors remain poorly understood. Two sisters developed papillary thyroid cancer (PTC) at age 32 and 34 years, followed by ductal carcinoma of the breast at 44 and 42 years.
View Article and Find Full Text PDFKnockout (ko) mice for the β2 adrenoceptor (Adrβ2) have impaired skeletal muscle regeneration, suggesting that this receptor is important for muscle stem cell (satellite cell) function. Here, we investigated the role of Adrβ2 in the function of satellite cells from β2ko mice in the context of muscle regeneration, through in vivo and in vitro experiments. Immunohistochemical analysis showed a significant reduction in the number of self-renewed Pax7 satellite cells, proliferating Pax7/MyoD myogenic precursor cells, and regenerating eMHC myofibers in regenerating muscle of β2ko mice at 30, 3, and 10 days post-injury, respectively.
View Article and Find Full Text PDFImportant advances on the role of genetic alterations in thyroid cancer have been achieved in the last two decades. One key reason is linked to the development of technical approaches that allowed for the mimicking of genetic alterations in vitro and in vivo and, more recently, the gene editing methodology. The CRISPR/Cas methodology has emerged as a tangible tool for editing virtually any DNA sequence in the genome.
View Article and Find Full Text PDFThyroid cancer is the most common endocrine malignancy, and the characterization of the genetic alterations in coding-genes that drive thyroid cancer are well consolidated in MAPK signaling. In the context of non-coding RNAs, microRNAs (miRNAs) are small non-coding RNAs that, when deregulated, cooperate to promote tumorigenesis by targeting mRNAs, many of which are proto-oncogenes and tumor suppressors. In thyroid cancer, is the most overexpressed miRNA associated with tumor aggressiveness and progression, while the antisense blocking of results in anti-tumoral effect.
View Article and Find Full Text PDFPurpose: Ciliary epithelium (CE) of adult mammalian eyes contains quiescent retinal progenitor/stem cells that generate neurospheres in vitro and differentiate into retinal neurons. This ability doesn't evolve efficiently probably because of regulatory mechanisms, such as microRNAs (miRNAs) that control pluripotent, progenitor, and differentiation genes. Here we investigate the presence of Let-7 miRNAs and its regulator and target, Lin28 and Hmga2, in CE cells from neurospheres, newborns, and adult tissues.
View Article and Find Full Text PDFVitreous alterations occur from early stages and continue through the normal aging, with gradual lamellae formation and the appearance of liquefied spaces, which eventually leads to complications, such as retinal tear, retinal detachment, and intravitreal hemorrhage. The aim of the present study was to investigate the expression of let-7 miRNA family in the vitreous and retina in newborn (1-3- day-old), young adult (2-month-old), and aging (12-month-old) rats, as well as their role as regulators of vitreous components. MicroRNAs are small, non-coding RNAs that post-transcriptionally regulate gene expression.
View Article and Find Full Text PDFThyroid cancer is the most frequent endocrine malignancy with the majority of cases derived from thyroid follicular cells and caused by sporadic mutations. However, when at least two or more first degree relatives present thyroid cancer, it is classified as familial non-medullary thyroid cancer (FNMTC) that may comprise 3-9% of all thyroid cancer. In this context, 5% of FNMTC are related to hereditary syndromes such as Cowden and Werner Syndromes, displaying specific genetic predisposition factors.
View Article and Find Full Text PDFOral cancer squamous cell carcinoma (OCSCC) mainly affects individuals aged between 50 and 70 years who consume tobacco and alcohol. Tobacco smoke contains hundreds of known toxic and carcinogenic molecules, and a few studies have sought to verify the relationship of such trace elements as risk or prognostic factors for head and neck cancer. We obtained 78 samples of tumor tissues from patients with OCSCC, and performed a qualitative elemental characterization using the micro X-Ray Fluorescence technique based on synchrotron radiation.
View Article and Find Full Text PDFLoss of the expression of thyroid differentiation markers such as sodium iodide symporter (NIS) and, consequently, radioiodine refractoriness is observed in aggressive papillary thyroid cancer and anaplastic thyroid cancer (ATC) that may harbor the BRAF mutation. Activation of the BRAF oncogene in thyroid follicular cells induces the expression of the cluster that comprises seven mature microRNAs (miRNAs). miRNAs are a class of endogenous small RNAs (∼22 nt) that regulate gene expression post-transcriptionally.
View Article and Find Full Text PDFThyroid cancer has been rapidly increasing in prevalence among humans in last 2 decades and is the most prevalent endocrine malignancy. Overall, thyroid-cancer patients have good rates of long-term survival, but a small percentage present poor outcome. Thyroid cancer aggressiveness is essentially related with thyroid follicular cell loss of differentiation and metastasis.
View Article and Find Full Text PDFThyroid cancer is the most common endocrine cancer with predominant prevalence of papillary thyroid cancer (PTC) histotype. MAPK signaling genetic alterations are frequent in PTC, affecting more than 80% of cases. These alterations constitutively activate MAPK signaling cross-regulating different pro-oncogenic pathways.
View Article and Find Full Text PDFSeveral studies have demonstrated dysregulated cardiac microRNAs (miRNAs) following cardiac stress and development of cardiac hypertrophy and failure. miRNAs are also differentially expressed in the inflammation that occurs in heart failure and, among these inflammatory-related miRNAs, the miR-155 has been implicated in the regulation of cardiac hypertrophy. Despite these data showing the role of miRNA-155 in cardiomyocyte hypertrophy under a hypertrophic stimulus, it is also important to understand the endogenous regulation of this miRNA without a hypertrophic stimulus to fully appreciate its function in this cell type.
View Article and Find Full Text PDFEmerging evidence suggests that unregulated Toll-like receptor (TLR) signaling promotes tumor survival signals, thus favoring tumor progression. Here, the mechanism underlying TLR4 overexpression in papillary thyroid carcinomas (PTC) mainly harboring the BRAF mutation was studied. TLR4 was overexpressed in PTC compared with nonneoplastic thyroid tissue.
View Article and Find Full Text PDFBackground: Nc886 is a 102 bp non-coding RNA transcript initially classified as a microRNA precursor (Pre-miR-886), later as a divergent homologue of the vault RNAs (vtRNA 2-1) and more recently as a novel type of RNA (nc886). Although nc886/vtRNA2-1/Pre-miR-886 identity is still controversial, it was shown to be epigenetically controlled, presenting both tumor suppressor and oncogenic function in different cancers. Here, we study for the first time the role of nc886 in prostate cancer.
View Article and Find Full Text PDFSkeletal myogenesis is a regulated process in which mononucleated cells, the myoblasts, undergo proliferation and differentiation. Upon differentiation, the cells align with each other, and subsequently fuse to form terminally differentiated multinucleated myotubes. Previous reports have identified the protein osteoglycin (Ogn) as an important component of the skeletal muscle secretome, which is expressed differentially during muscle development.
View Article and Find Full Text PDFCancer Genomics Proteomics
May 2018
Background: Thyroid cancer is one of the most frequent types of endocrine cancers. In most cases, thyroid cancers are caused by deregulated miRNA expression, especially involving the miR17-92 cluster. miR17-92 transcription is altered in several different tumor types including lymphoma, leukemia, and of the breast and thyroid.
View Article and Find Full Text PDFPapillary Thyroid Cancer (PTC) is an endocrine malignancy in which BRAF oncogenic mutation induces the most aggressive phenotype. In this way, considering that lncRNAs are arising as key players in oncogenesis, it is of high interest the identification of BRAF-associated long noncoding RNAs, which can provide possible candidates for secondary mechanisms of BRAF-induced malignancy in PTC. In this study, we identified differentially expressed lncRNAs correlated with BRAF in PTC and, also, extended the cohort of paired normal and PTC samples to more accurately identify differentially expressed lncRNAs between these conditions.
View Article and Find Full Text PDF