Publications by authors named "Edna J Molina Bacca"

Land conservation and increased carbon uptake on land are fundamental to achieving the ambitious targets of the climate and biodiversity conventions. Yet, it remains largely unknown how such ambitions, along with an increasing demand for agricultural products, could drive landscape-scale changes and affect other key regulating nature's contributions to people (NCP) that sustain land productivity outside conservation priority areas. By using an integrated, globally consistent modelling approach, we show that ambitious carbon-focused land restoration action and the enlargement of protected areas alone may be insufficient to reverse negative trends in landscape heterogeneity, pollination supply, and soil loss.

View Article and Find Full Text PDF

Degrowth proponents advocate reducing ecologically destructive forms of production and resource throughput in wealthy economies to achieve environmental goals, while transforming production to focus on human well-being. Here we present a quantitative model to test degrowth principles in the food and land system. Our results confirm that reducing and redistributing income alone, within current development paradigms, leads to limited greenhouse gas (GHG) emission mitigation from agriculture and land-use change, as the nutrition transition towards unsustainable diets already occurs at relatively low income levels.

View Article and Find Full Text PDF

Hypothesis: Mechanistic understanding of particle-flocculant interactions and its link to the resulting floc structure is essential for developing tailings treatments with enhanced consolidation rates. A noninvasive, in-situ visualization of the floc formation and the consequent sediment microstructure via tri-dimensional laser scanning confocal microscopy (LSCM) can enable establishing the quantitative link between the flocculation conditions and bulk properties of the resulting sediment structures.

Experiments: A dual fluorescence/reflectance confocal imaging protocol is developed to non-invasively detect morphological changes in dense oil sands tailings during flocculation with an anionic polymer and the subsequent sediment compaction stages for three different polymer dosages.

View Article and Find Full Text PDF