Drone monitoring plays an irreplaceable and significant role in forest firefighting due to its characteristics of wide-range observation and real-time messaging. However, aerial images are often susceptible to different degradation problems before performing high-level visual tasks including but not limited to smoke detection, fire classification, and regional localization. Recently, the majority of image enhancement methods are centered around particular types of degradation, necessitating the memory unit to accommodate different models for distinct scenarios in practical applications.
View Article and Find Full Text PDFFront Plant Sci
November 2022
The semi-transparency property of smoke integrates it highly with the background contextual information in the image, which results in great visual differences in different areas. In addition, the limited annotation of smoke images from real forest scenarios brings more challenges for model training. In this paper, we design a semi-supervised learning strategy, named smoke-aware consistency (SAC), to maintain pixel and context perceptual consistency in different backgrounds.
View Article and Find Full Text PDFThis work presents a hybrid visual-based SLAM architecture that aims to take advantage of the strengths of each of the two main methodologies currently available for implementing visual-based SLAM systems, while at the same time minimizing some of their drawbacks. The main idea is to implement a local SLAM process using a filter-based technique, and enable the tasks of building and maintaining a consistent global map of the environment, including the loop closure problem, to use the processes implemented using optimization-based techniques. Different variants of visual-based SLAM systems can be implemented using the proposed architecture.
View Article and Find Full Text PDFTo obtain autonomy in applications that involve Unmanned Aerial Vehicles (UAVs), the capacity of self-location and perception of the operational environment is a fundamental requirement. To this effect, GPS represents the typical solution for determining the position of a UAV operating in outdoor and open environments. On the other hand, GPS cannot be a reliable solution for a different kind of environments like cluttered and indoor ones.
View Article and Find Full Text PDFMonitoring and analysis of open air basins is a critical task in waste water plant management. These tasks generally require sampling waters at several hard to access points, be it real time with multiparametric sensor probes, or retrieving water samples. Full automation of these processes would require deploying hundreds (if not thousands) of fixed sensors, unless the sensors can be translated.
View Article and Find Full Text PDFIn this work, the problem of the cooperative visual-based SLAM for the class of multi-UA systems that integrates a lead agent has been addressed. In these kinds of systems, a team of aerial robots flying in formation must follow a dynamic lead agent, which can be another aerial robot, vehicle or even a human. A fundamental problem that must be addressed for these kinds of systems has to do with the estimation of the states of the aerial robots as well as the state of the lead agent.
View Article and Find Full Text PDFThis work presents a solution to localize Unmanned Autonomous Vehicles with respect to pipes and other cylindrical elements found in inspection and maintenance tasks both in industrial and civilian infrastructures. The proposed system exploits the different features of vision and laser based sensors, combining them to obtain accurate positioning of the robot with respect to the cylindrical structures. A probabilistic (RANSAC-based) procedure is used to segment possible cylinders found in the laser scans, and this is used as a seed to accurately determine the robot position through a computer vision system.
View Article and Find Full Text PDFThis work presents a cooperative monocular-based SLAM approach for multi-UAV systems that can operate in GPS-denied environments. The main contribution of the work is to show that, using visual information obtained from monocular cameras mounted onboard aerial vehicles flying in formation, the observability properties of the whole system are improved. This fact is especially notorious when compared with other related visual SLAM configurations.
View Article and Find Full Text PDFA new approach to the monocular simultaneous localization and mapping (SLAM) problem is presented in this work. Data obtained from additional bearing-only sensors deployed as wearable devices is fully fused into an Extended Kalman Filter (EKF). The wearable device is introduced in the context of a collaborative task within a human-robot interaction (HRI) paradigm, including the SLAM problem.
View Article and Find Full Text PDFSensors (Basel)
April 2014
This work presents a variant approach to the monocular SLAM problem focused in exploiting the advantages of a human-robot interaction (HRI) framework. Based upon the delayed inverse-depth feature initialization SLAM (DI-D SLAM), a known monocular technique, several but crucial modifications are introduced taking advantage of data from a secondary monocular sensor, assuming that this second camera is worn by a human. The human explores an unknown environment with the robot, and when their fields of view coincide, the cameras are considered a pseudo-calibrated stereo rig to produce estimations for depth through parallax.
View Article and Find Full Text PDFIn this work, a novel data validation algorithm for a single-camera SLAM system is introduced. A 6-degree-of-freedom monocular SLAM method based on the delayed inverse-depth (DI-D) feature initialization is used as a benchmark. This SLAM methodology has been improved with the introduction of the proposed data association batch validation technique, the highest order hypothesis compatibility test, HOHCT.
View Article and Find Full Text PDF