We present an alternative method for interpreting the velocity autocorrelation function (VACF) of a fluid with application to extracting the entropy in a manner similar to the methods developed by Lin et al. [J. Chem.
View Article and Find Full Text PDFWe have performed finite-temperature density functional theory molecular dynamics simulations on dense methane, ammonia, and water mixtures (CH4:NH3:H2O) for various compositions and temperatures (2000 K ≤ T ≤ 10,000 K) that span a set of possible conditions in the interiors of ice-giant exoplanets. The equation-of-state, pair distribution functions, and bond autocorrelation functions (BACF) were used to probe the structure and dynamics of these complex fluids. In particular, an improvement to the choice of the cutoff in the BACF was developed that allowed analysis refinements for density and temperature effects.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
October 2014
In the warm dense matter (WDM) regime, material properties like diffusion and viscosity can be obtained from lengthy quantum molecular dynamics simulations, where the quantum behavior of the electrons is represented using either Kohn-Sham or orbital-free density functional theory. To reduce the simulation duration, we fit the time dependence of the autocorrelation functions (ACFs) and then use the fit to find values of the diffusion and viscosity. This fitting procedure avoids noise in the long time behavior of the ACFs.
View Article and Find Full Text PDF