Background: The 2013-16 Ebola virus disease epidemic in west Africa caused international alarm due to its rapid and extensive spread resulting in a significant death toll and social unrest within the affected region. The large number of cases provided an opportunity to study the long-term kinetics of Zaire ebolavirus-specific immune response of survivors in addition to known contacts of those infected with the virus.
Methods: In this observational cohort study, we worked with leaders of Ebola virus disease survivor associations in two regions of Guinea, Guéckédou and Coyah, to recruit survivors of Ebola virus disease, contacts from households of individuals known to have had Ebola virus disease, and individuals who were not knowingly associated with infected individuals or had not had Ebola virus disease symptoms to serve as negative controls.
Background: A unit of the European Mobile Laboratory (EMLab) consortium was deployed to the Ebola virus disease (EVD) treatment unit in Guéckédou, Guinea, from March 2014 through March 2015.
Methods: The unit diagnosed EVD and malaria, using the RealStar Filovirus Screen reverse transcription-polymerase chain reaction (RT-PCR) kit and a malaria rapid diagnostic test, respectively.
Results: The cleaned EMLab database comprised 4719 samples from 2741 cases of suspected EVD from Guinea.
Despite the magnitude of the Ebola virus disease (EVD) outbreak in West Africa, there is still a fundamental lack of knowledge about the pathophysiology of EVD. In particular, very little is known about human immune responses to Ebola virus. Here we evaluate the physiology of the human T cell immune response in EVD patients at the time of admission to the Ebola Treatment Center in Guinea, and longitudinally until discharge or death.
View Article and Find Full Text PDFIn October 2012, a cluster of illnesses and deaths was reported in Uganda and was confirmed to be an outbreak of Marburg virus disease (MVD). Patients meeting the case criteria were interviewed using a standard investigation form, and blood specimens were tested for evidence of acute or recent Marburg virus infection by reverse transcription-polymerase chain reaction (RT-PCR) and antibody enzyme-linked immunosorbent assay. The total count of confirmed and probable MVD cases was 26, of which 15 (58%) were fatal.
View Article and Find Full Text PDFWest Africa is currently witnessing the most extensive Ebola virus (EBOV) outbreak so far recorded. Until now, there have been 27,013 reported cases and 11,134 deaths. The origin of the virus is thought to have been a zoonotic transmission from a bat to a two-year-old boy in December 2013 (ref.
View Article and Find Full Text PDFMilitary personnel are at high risk of contracting vector-borne and zoonotic infections, particularly during overseas deployments, when they may be exposed to endemic or emerging infections not prevalent in their native countries. We conducted seroprevalence testing of 467 UK military personnel deployed to Helmand Province, Afghanistan, during 2008-2011 and found that up to 3.1% showed seroconversion for infection with Rickettsia spp.
View Article and Find Full Text PDFFerrets are widely used to study human influenza virus infection. Their airway physiology and cell receptor distribution makes them ideal for the analysis of pathogenesis and virus transmission, and for testing the efficacy of anti-influenza interventions and vaccines. The 2009 pandemic influenza virus (H1N1pdm09) induces mild to moderate respiratory disease in infected ferrets, following inoculation with 106 plaque-forming units (pfu) of virus.
View Article and Find Full Text PDFHantaviruses are an established cause of haemorrhagic fever with renal syndrome (HFRS) in Europe. Following a confirmed case of HFRS in the UK, in an individual residing on a farm in North Yorkshire and the Humber, a tidal estuary on the east coast of Northern England, and the subsequent isolation of a Seoul hantavirus from rats trapped on the patient's farm, it was considered appropriate to further investigate the public health risk of this virus in the region. Of a total 119 individuals tested, nine (7.
View Article and Find Full Text PDFCrimean-Congo hemorrhagic fever (CCHF) virus is a serious human pathogen causing severe hemorrhagic disease with a fatality rate of up to approximately 30%. We have determined the viral genomic sequence from an isolate that caused a fatal case of imported CCHF in the United Kingdom in October 2012.
View Article and Find Full Text PDFHuman APOBEC3 enzymes are cellular DNA cytidine deaminases that inhibit and/or mutate a variety of retroviruses, retrotransposons, and DNA viruses. Here, we report a detailed examination of human APOBEC3 gene expression, focusing on APOBEC3G (A3G) and APOBEC3F (A3F), which are potent inhibitors of human immunodeficiency virus type 1 (HIV-1) infection but are suppressed by HIV-1 Vif. A3G and A3F are expressed widely in hematopoietic cell populations, including T cells, B cells, and myeloid cells, as well as in tissues where mRNA levels broadly correlate with the lymphoid cell content (gonadal tissues are exceptions).
View Article and Find Full Text PDFThe antiretroviral activity of the cellular enzyme APOBEC3G has been attributed to the excessive deamination of cytidine (C) to uridine (U) in minus strand reverse transcripts, a process resulting in guanosine (G) to adenosine (A) hypermutation of plus strand DNAs. The HIV-1 Vif protein counteracts APOBEC3G by inducing proteasomal degradation and exclusion from virions through recruitment of a cullin5 ECS E3 ubiquitin ligase complex. APOBEC3G belongs to the APOBEC protein family, members of which possess consensus (H/C)-(A/V)-E-(X)24-30-P-C-(X)2-C cytidine deaminase motifs.
View Article and Find Full Text PDF