Publications by authors named "Edmund Linfield"

We report room temperature heterodyne detection of a quantum cascade laser beaten with a local oscillator on a unipolar quantum photodetector in two different atmospheric windows, at 4.8 µm and 9 µm. A noise equivalent power of few pW is measured by employing an active stabilization technique in which the local oscillator and the signal are locked in phase.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the optical conductivity and magnetotransport properties of top-gated devices made from the topological insulator BiSe, focusing on how different carrier types within the material interact.
  • Findings reveal that the topologically protected surfaces are somewhat shielded from gate control due to trivial band-bending states but still show significant mobility changes based on external gate bias.
  • The research highlights that the optical conductivity is largely influenced by the topological surface states and is particularly affected by scattering from trivial states, suggesting potential uses in future plasmonic device designs.
View Article and Find Full Text PDF

We demonstrate that asynchronous optical sampling (ASOPS) can be used to measure the propagation of terahertz (THz) bandwidth pulses in a coplanar waveguide device with integrated photoconductive switches used for signal excitation and detection. We assess the performance of the ASOPS technique as a function of measurement duration, showing the ability to acquire full THz time-domain traces at rates up to 100 Hz. We observe a peak dynamic range of 40 dB for the shortest measurement duration of 10 ms, increasing to 88 dB with a measurement time of 500 s.

View Article and Find Full Text PDF

Optical resonators are fundamental building blocks of photonic systems, enabling meta-surfaces, sensors, and transmission filters to be developed for a range of applications. Sub-wavelength size (< λ/10) resonators, including planar split-ring resonators, are at the forefront of research owing to their potential for light manipulation, sensing applications and for exploring fundamental light-matter coupling phenomena. Near-field microscopy has emerged as a valuable tool for mode imaging in sub-wavelength size terahertz (THz) frequency resonators, essential for emerging THz devices (e.

View Article and Find Full Text PDF

We present measurements of the coherence times of excited states of hydrogen-like arsenic impurities in germanium (Ge:As) using a table-top two-dimensional time-domain spectroscopy (2D-TDS) system. We show that this laboratory system is capable of resolving the coherence lifetimes of atomic-like excited levels of impurity centers in semiconductors, such as those used in solid-state quantum information technologies, on a subpicosecond time scale. By fitting the coherent nonlinear response of the system with the known intracenter transition frequencies, we are able to monitor coherent population transfer and decay of the transitions from the 2p and 2p states for different low excitation pulse fields.

View Article and Find Full Text PDF

Polaritons in two-dimensional layered crystals offer an effective solution to confine, enhance and manipulate terahertz (THz) frequency electromagnetic waves at the nanoscale. Recently, strong THz field confinement has been achieved in a graphene-insulator-metal structure, exploiting THz plasmon polaritons (PPs) with strongly reduced wavelength (λ ≈ λ/66) compared to the photon wavelength λ. However, graphene PPs propagate isotropically, complicating the directional control of the THz field, which, on the contrary, can be achieved exploiting anisotropic layered crystals, such as orthorhombic black-phosphorus.

View Article and Find Full Text PDF
Article Synopsis
  • - Harmonic generation occurs through non-linear interactions between light and matter, allowing the conversion of optical signals to higher frequencies, which is crucial for optics technology.
  • - Researchers achieved significant progress by demonstrating third harmonic generation at 9.63 THz using single-layer graphene and a circular split ring resonator array, pumped by a 3.21 THz frequency quantum cascade laser.
  • - This innovative method leverages graphene's nonlinearity and resonator design to enhance pump power density, unlocking access to the 6-12 THz frequency range, a challenging area for compact source development due to limitations with traditional semiconductors.
View Article and Find Full Text PDF

In this paper we report an improved method of coherent sensing through the use of a generalized phase-stepping algorithm to extract magnitude and phase information from interferometric fringes acquired by laser feedback interferometry (LFI). Our approach allows for significantly reduced optical sampling and acquisition times whilst also avoiding the need for fitting to complex models of lasers under optical feedback in post-processing. We investigate theoretically the applicability of this method under different levels of optical feedback, different laser parameters, and for different sampling conditions.

View Article and Find Full Text PDF

Graphene is a nonlinear material in the terahertz (THz) frequency range, with χ ∼ 10 m/V ∼ 15 orders of magnitude higher than that of other materials used in the THz range, such as GaAs or lithium niobate. This nonlinear behavior, combined with ultrafast dynamic for excited carriers, proved to be essential for third harmonic generation in the sub-THz and low (<2.5 THz) THz range, using moderate (60 kV/cm) fields and at room temperature.

View Article and Find Full Text PDF

The response of terahertz to the presence of water content makes it an ideal analytical tool for hydration monitoring in agricultural applications. This study reports on the feasibility of terahertz sensing for monitoring the hydration level of freshly harvested leaves of Celtis sinensis by employing a imaging platform based on quantum cascade lasers and laser feedback interferometry. The imaging platform produces wide angle high resolution terahertz amplitude and phase images of the leaves at high frame rates allowing monitoring of dynamic water transport and other changes across the whole leaf.

View Article and Find Full Text PDF

In the majority of optoelectronic devices, emission and absorption of light are considered as perturbative phenomena. Recently, a regime of highly non-perturbative interaction, ultra-strong light-matter coupling, has attracted considerable attention, as it has led to changes in the fundamental properties of materials such as electrical conductivity, rate of chemical reactions, topological order, and non-linear susceptibility. Here, we explore a quantum infrared detector operating in the ultra-strong light-matter coupling regime driven by collective electronic excitations, where the renormalized polariton states are strongly detuned from the bare electronic transitions.

View Article and Find Full Text PDF
Article Synopsis
  • - One of the groundbreaking advancements in physics involves applying topology to photonics, leading to the development of topological lasers, particularly focusing on edge states until now.
  • - The study introduces a topological bulk quantum cascade laser (QCL) working at terahertz frequencies, combining unique in-plane reflection capabilities and bound states in the continuum for enhanced performance.
  • - The experimental results showcase a miniaturized THz laser achieving single-mode lasing with a notable side-mode suppression ratio and cylindrical vector beam emission, suggesting potential applications in imaging, sensing, and communications.
View Article and Find Full Text PDF
Article Synopsis
  • Detecting skin problems can be hard, especially when there are no obvious signs like changes in color.
  • This study shows a new type of technology called terahertz (THz) imaging that can help find skin issues using special lasers.
  • The results showed that THz imaging could effectively detect different skin conditions, like benign naevus and melanoma, even when using very thin skin samples.
View Article and Find Full Text PDF

Charge-sensitive infrared photo-transistors (CSIP) are quantum detectors of mid-infrared radiation (λ=4 µm-14 µm) which have been reported to have outstanding figures of merit and sensitivities that allow single photon detection. The typical absorbing region of a CSIP consists of an AlGaAs quantum heterostructure, where a GaAs quantum well, where the absorption takes place, is followed by a triangular barrier with a graded x(Al) composition that connects the quantum well to a source-drain channel. Here, we report a CSIP designed to work for a 9.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers utilized terahertz (THz) technology—specifically broadband THz time-domain spectroscopic imaging and THz quantum cascade laser imaging—to create hydration maps of plucked leaves, capturing variations and dynamics in water levels.
  • * Both imaging techniques, while based on raster scanning, provide distinct information: THz time-domain spectroscopy reveals detailed effects of dehydration on leaf structure, whereas THz quantum cascade laser imaging highlights rapid changes in dehydration patterns.
View Article and Find Full Text PDF

Topological cavities, whose modes are protected against perturbations, are promising candidates for novel semiconductor laser devices. To date, there have been several demonstrations of topological lasers (TLs) exhibiting robust lasing modes. The possibility of achieving nontrivial beam profiles in TLs has recently been explored in the form of vortex wavefront emissions enabled by a structured optical pump or strong magnetic field, which are inconvenient for device applications.

View Article and Find Full Text PDF

Mode locking, the self-starting synchronous oscillation of electromagnetic modes in a laser cavity, is the primary way to generate ultrashort light pulses. In random lasers, without a cavity, mode-locking, the nonlinear coupling amongst low spatially coherent random modes, can be activated via optical pumping, even without the emission of short pulses. Here, by exploiting the combination of the inherently giant third-order χ nonlinearity of semiconductor heterostructure lasers and the nonlinear properties of graphene, the authors demonstrate mode-locking in surface-emitting electrically pumped random quantum cascade lasers at terahertz frequencies.

View Article and Find Full Text PDF

The concept of strong light-matter coupling has been demonstrated in semiconductor structures, and it is poised to revolutionize the design and implementation of components, including solid state lasers and detectors. We demonstrate an original nanospectroscopy technique that permits the study of the light-matter interaction in single subwavelength-sized nanocavities where far-field spectroscopy is not possible using conventional techniques. We inserted a thin (∼150 nm) polymer layer with negligible absorption in the mid-infrared range (5 μm < λ < 12 μm) inside a metal-insulator-metal resonant cavity, where a photonic mode and the intersubband transition of a semiconductor quantum well are strongly coupled.

View Article and Find Full Text PDF

Lasers that can emit two photons from a single electron relaxation between two states of the same parity have been discussed since the early days of the laser era. However, such lasers have seen only limited success, mainly due to a lack of suitable gain medium. We propose that terahertz (THz) frequency quantum cascade lasers (QCLs) are an ideal semiconductor structure to realize such two-photon emissions.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed a new spectroscopy system that uses electrically-pumped terahertz frequency-combs, enabling simultaneous monitoring and manipulation of emitted light phases without external signals.
  • The system relies on THz quantum cascade lasers and back-scattering techniques to exploit phase coherence, allowing control over the amplitude and frequency of terahertz signals in real-time.
  • This innovative approach provides a high-resolution nanoscope for mapping the terahertz responses of nanoscale materials, and it has potential applications across infrared imaging in various scientific fields, including plasmonics and quantum science.
View Article and Find Full Text PDF

High-performance broadband infrared (IR)/terahertz (THz) detection is crucial in many optoelectronic applications. However, the spectral response range of semiconductor-based photodetectors is limited by the bandgaps. This paper proposes a ratchet structure based on the GaAs/AlGaAs heterojunction, where the quasi-stationary hot hole distribution and intravalence band absorption from light or heavy hole states to the split-off band overcome the bandgap limit, ensuring an ultrabroadband photoresponse from near-IR to THz region (4 to 300 THz).

View Article and Find Full Text PDF

In this article, we explore the interplay between the self-pulsations (SPs) and self-mixing (SM) signals generated in terahertz (THz) quantum cascade lasers (QCLs) under optical feedback. We find that optical feedback dynamics in a THz QCL, namely, SPs, modulate the conventional SM interference fringes in a laser feedback interferometry system. The phenomenon of fringe loss in the SM signal - well known in interband diode lasers - was also observed along with pronounced SPs.

View Article and Find Full Text PDF
Article Synopsis
  • Millimeter wave (mmWave) generation using photonic techniques has mainly relied on near-infrared lasers, which face limitations such as inefficient conversion and a lack of integration.
  • The research highlights the advantages of terahertz (THz) quantum cascade lasers (QCLs) that allow for both laser action and mmWave generation in a single, compact device.
  • The study successfully demonstrates that these THz QCLs can generate mmWave frequencies ranging from 25 GHz to 500 GHz, leveraging nonlinear effects and phase matching, paving the way for low noise and efficient mmWave generation.
View Article and Find Full Text PDF
Article Synopsis
  • Engineers have developed terahertz quantum-cascade-lasers (QCLs) with ultra-broad gain spectra, crucial for creating compact optical frequency-comb-synthesizers in the far-infrared spectrum.
  • The design includes a miniaturized THz FCS that uses an on-chip graphene saturable-absorber reflector to maintain phase coherence among lasing modes, even beyond the limits of traditional four-wave mixing methods.
  • The advancements allow for a high-power output with over 90 optical modes and stable operation, which has implications for high-precision spectroscopy and quantum metrology applications.
View Article and Find Full Text PDF

Semiconductor heterostructures have enabled a great variety of applications ranging from GHz electronics to photonic quantum devices. While nonlinearities play a central role for cutting-edge functionality, they require strong field amplitudes owing to the weak light-matter coupling of electronic resonances of naturally occurring materials. Here, we ultrastrongly couple intersubband transitions of semiconductor quantum wells to the photonic mode of a metallic cavity in order to custom-tailor the population and polarization dynamics of intersubband cavity polaritons in the saturation regime.

View Article and Find Full Text PDF