Publications by authors named "Edmund Graziani"

Rapamycin, a well-known macrocyclic natural product with myriad biological activities, has been the subject of intense study since its first isolation and characterization over five decades ago. Rapamycin has been found to adopt a single conformation in the solid state (both when protein bound and uncomplexed) and exists as a mixture of two conformations in solution. Early work established that the major conformer in solution is the trans amide isomer but left the minor conformer mostly uncharacterized.

View Article and Find Full Text PDF

The approval of ado-trastuzumab emtansine (T-DM1) in HER2 metastatic breast cancer validated HER2 as a target for HER2-specific antibody-drug conjugates (ADC). Despite its demonstrated clinical efficacy, certain inherent properties within T-DM1 hamper this compound from achieving the full potential of targeting HER2-expressing solid tumors with ADCs. Here, we detail the discovery of PF-06804103, an anti-HER2 ADC designed to have a widened therapeutic window compared with T-DM1.

View Article and Find Full Text PDF

A modeling and simulation approach was used for quantitative comparison of a new generation HER2 antibody drug conjugate (ADC, PF-06804103) with trastuzumab-DM1 (T-DM1). To compare preclinical efficacy, the pharmacokinetic (PK)/pharmacodynamic (PD) relationship of PF-06804103 and T-DM1 was determined across a range of mouse tumor xenograft models, using a tumor growth inhibition model. The tumor static concentration was assigned as the minimal efficacious concentration.

View Article and Find Full Text PDF

Novel neolymphostin-based antibody-drug conjugate (ADC) precursors were synthesized either through amide couplings between both cleavable and non-cleavable linkers and neolymphostin derivatives, or through Cu(I)-catalyzed acetylene-azide click cycloadditon between non-cleavable linkers and neolymphostin acetal derivatives. These precursors were site-specifically conjugated to cysteine mutant trastuzumab-A114C to provide neolymphostin-based ADCs. Preliminary in vitro data indicated that the corresponding ADCs were active against HER2-expressing tumor cell lines, thus providing a proof-of-concept for using neolymphostin as ADC-based anticancer agents.

View Article and Find Full Text PDF

A potent class of DNA-damaging agents, natural product bis-intercalator depsipeptides (NPBIDs), was evaluated as ultrapotent payloads for use in antibody-drug conjugates (ADCs). Detailed investigation of potency (both in cells and via biophysical characterization of DNA binding), chemical tractability, and in vitro and in vivo stability of the compounds in this class eliminated a number of potential candidates, greatly reducing the complexity and resources required for conjugate preparation and evaluation. This effort yielded a potent, stable, and efficacious ADC, PF-06888667, consisting of the bis-intercalator, SW-163D, conjugated via an N-acetyl-lysine-valine-citrulline- p-aminobenzyl alcohol- N, N-dimethylethylenediamine (AcLysValCit-PABC-DMAE) linker to an engineered variant of the anti-Her2 mAb, trastuzumab, catalyzed by transglutaminase.

View Article and Find Full Text PDF

Erythromycin, avermectin and rapamycin are clinically useful polyketide natural products produced on modular polyketide synthase multienzymes by an assembly-line process in which each module of enzymes in turn specifies attachment of a particular chemical unit. Although polyketide synthase encoding genes have been successfully engineered to produce novel analogues, the process can be relatively slow, inefficient, and frequently low-yielding. We now describe a method for rapidly recombining polyketide synthase gene clusters to replace, add or remove modules that, with high frequency, generates diverse and highly productive assembly lines.

View Article and Find Full Text PDF

Antibody drug conjugates (ADCs) are no longer an unknown entity in the field of cancer therapy with the success of marketed ADCs like ADCETRIS and KADCYLA and numerous others advancing through clinical trials. The pursuit of novel cytotoxic payloads beyond the mictotubule inhibitors and DNA damaging agents has led us to the recent discovery of an mRNA splicing inhibitor, thailanstatin, as a potent ADC payload. In our previous work, we observed that the potency of this payload was uniquely tied to the method of conjugation, with lysine conjugates showing much superior potency as compared to cysteine conjugates.

View Article and Find Full Text PDF

As the antibody drug conjugate (ADC) community continues to shift towards site-specific conjugation technology, there is a growing need to understand how the site of conjugation impacts the biophysical and biological properties of an ADC. In order to address this need, we prepared a carefully selected series of engineered cysteine ADCs and proceeded to systematically evaluate their potency, stability, and PK exposure. The site of conjugation did not have a significant influence on the thermal stability and in vitro cytotoxicity of the ADCs.

View Article and Find Full Text PDF
Article Synopsis
  • The increasing significance of antibody-drug conjugates (ADCs) in cancer treatment necessitates a deeper understanding of their molecular behavior and mechanisms.
  • Imaging studies using traditional fluorophores can distort the ADC's properties, leading to inaccurate assessments of their effectiveness and safety.
  • The introduction of a "clickable" ADC that uses a smaller azide group for labeling provides a more effective alternative, showing better potency and uptake in cells compared to conventional fluorophore-labeled ADCs.
View Article and Find Full Text PDF

As part of our efforts to develop new classes of tubulin inhibitor payloads for antibody-drug conjugate (ADC) programs, we developed a tubulysin ADC that demonstrated excellent in vitro activity but suffered from rapid metabolism of a critical acetate ester. A two-pronged strategy was employed to address this metabolism. First, the hydrolytically labile ester was replaced by a carbamate functional group resulting in a more stable ADC that retained potency in cellular assays.

View Article and Find Full Text PDF

There is a considerable ongoing work to identify new cytotoxic payloads that are appropriate for antibody-based delivery, acting via mechanisms beyond DNA damage and microtubule disruption, highlighting their importance to the field of cancer therapeutics. New modes of action will allow a more diverse set of tumor types to be targeted and will allow for possible mechanisms to evade the drug resistance that will invariably develop to existing payloads. Spliceosome inhibitors are known to be potent antiproliferative agents capable of targeting both actively dividing and quiescent cells.

View Article and Find Full Text PDF

The focus of the antibody-drug conjugate (ADC) field is shifting toward development of site-specific, next-generation ADCs to address the issue of heterogeneity, metabolic instability, conjugatability, and less than ideal therapeutic index associated with the conventional (heterogeneous) ADCs. It is evident from the recent literature that the site of conjugation, the structure of the linker, and the physicochemical properties of the linker-payload all have a significant impact on the safety and efficacy of the resulting ADCs. Screening multiple linker-payloads on multiple sites of an antibody presents a combinatorial problem that necessitates high-throughput conjugation and purification methodology to identify ADCs with the best combination of site and payload.

View Article and Find Full Text PDF

Antibody-drug conjugates (ADC) are emerging as clinically effective therapy. We hypothesized that cancers treated with ADCs would acquire resistance mechanisms unique to immunoconjugate therapy and that changing ADC components may overcome resistance. Breast cancer cell lines were exposed to multiple cycles of anti-Her2 trastuzumab-maytansinoid ADC (TM-ADC) at IC80 concentrations followed by recovery.

View Article and Find Full Text PDF

The stability of the connection between the antibody and the toxin can have a profound impact on ADC safety and efficacy. There has been increasing evidence in recent years that maleimide-based ADCs are prone to payload loss via a retro-Michael type reaction. Herein, we report a mild method for the hydrolysis of the succinimide-thioether ring which results in a "ring-opened" linker.

View Article and Find Full Text PDF

Droplet-based fluidics is emerging as a powerful platform for single cell analysis, directed evolution of enzymes, and high throughput screening studies. Due to the small amounts of compound compartmentalized in each droplet, detection has been primarily by fluorescence. To extend the range of experiments that can be carried out in droplets, we have developed the use of electrospray ionization mass spectrometry (ESI-MS) to measure femtomole quantities of proteins in individual pico- to nanoliter droplets.

View Article and Find Full Text PDF

One of the major barriers to successful axon regeneration in the adult CNS is the presence of inhibitory molecules that originate from the myelin sheath and glial scar. So far, only a small number of pharmacological compounds have exhibited functional activity against CNS inhibitors in promoting axon regeneration after injury. To search for novel compounds that enhance neurite outgrowth in vitro, we initiated a screen of a collection of natural products.

View Article and Find Full Text PDF

The N-terminal domain of NogoA, called amino-Nogo, inhibits axonal outgrowth and cell spreading via a largely unknown mechanism. In the present study, we show that amino-Nogo decreases Rac1 activity and inhibits fibroblast spreading. 12-O-Tetradecanoylphorbol-13-acetate-type tumor promoters, such as phorbol 12-myristate 13-acetate (PMA) and teleocidin, increase Rac1 activity and overcome the amino-Nogo-induced inhibition of cell spreading.

View Article and Find Full Text PDF

Covering: 2003 to 2008. In the period 1998 to 2003, a number of reviews have appeared evaluating the potential of rapamycin and other immunophilin ligands as therapies for cancer, organ transplantation, restenosis prevention, autoimmune disorders, and neurodegenerative diseases. This review aims to evaluate advances in the field since that time, specifically detailing progress in: (i) the role of rapamycin in inhibiting its principal cellular target, the mammalian target of rapamycin (mTOR) in both of its protein complexes, (ii) understanding the role of specific genes in the mechanism of rapamycin biosynthesis, (iii) the production of novel analogs of rapamycin via precursor-directed biosynthesis, (iv) the enzymology of the pipecolate incorporating enzyme (RapL) in vitro, and (v) the pharmacology and mechanistic chemical biology of rapamycin analog mediated neuroprotection and neuroregeneration.

View Article and Find Full Text PDF

Expression of biosynthetic pathways in heterologous hosts is an emerging approach to expedite production improvement and biosynthetic modification of natural products derived from microbial secondary metabolites. Herein we describe the development of a versatile Escherichia coli-Streptomyces shuttle Bacterial Artificial Chromosomal (BAC) conjugation vector, pSBAC, to facilitate the cloning, genetic manipulation, and heterologous expression of actinomycetes secondary metabolite biosynthetic gene clusters. The utility of pSBAC was demonstrated through the rapid cloning and heterologous expression of one of the largest polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) biosynthetic pathways: the meridamycin biosynthesis gene cluster (mer).

View Article and Find Full Text PDF

Rapamycin is an immunosuppressive immunophilin ligand reported as having neurotrophic activity. We show that modification of rapamycin at the mammalian target of rapamycin (mTOR) binding region yields immunophilin ligands, WYE-592 and ILS-920, with potent neurotrophic activities in cortical neuronal cultures, efficacy in a rodent model for ischemic stroke, and significantly reduced immunosuppressive activity. Surprisingly, both compounds showed higher binding selectivity for FKBP52 versus FKBP12, in contrast to previously reported immunophilin ligands.

View Article and Find Full Text PDF

Immunophilins are protein receptors for the immunosuppressant drugs FK506, cyclosporin A (CsA), and rapamycin. Two categories of immunophilins are the FK506-binding proteins (FKBPs), which bind to FK506, rapamycin, and CCI-779 and the cyclophilins, which bind to CsA. Reports have shown that immunophilins are expressed in the brain and spinal cord, are 10-100-fold higher in CNS tissue than immune tissue, and their expression is increased following nerve injury, suggesting that their chemical ligands may have therapeutic utility in the treatment of neurodegenerative diseases.

View Article and Find Full Text PDF

Two new peptaibols, septocylindrin A (1) and septocylindrin B (2), related to the well-studied membrane-channel-forming peptaibol alamethicin, were obtained from a terrestrial isolate of the fungus Septocylindrium sp. Both 1 and 2 are linear 19-amino acid peptides with a modified phenylalanine C-terminus. Analysis of the HRMS data indicated that they differ only in the 18th residue, where 1 contains Glu and 2 contains Gln.

View Article and Find Full Text PDF

3-Normeridamycin (1), isolated from fermentation extracts of the soil actinomycete Streptomyces sp. LL-C31037, demonstrated potent neuroprotective activity. When challenged with the neurotoxin 1-methyl-4-phenylpyridinium (MPP+), known to induce parkinsonism, 1 restored functional dopamine uptake in a concentration-dependent manner, with an EC50 of 110 nM in dopaminergic neurons.

View Article and Find Full Text PDF

Five new polyketide metabolites, phaeochromycins A-E (1-5), were isolated from an actinomycete designated Streptomyces phaeochromogenes LL-P018, cultured from a soil sample collected from a riverbank in Westevenger, Germany. Phaeochromycins A and C were found to be weak inhibitors of MAPKAP kinase-2 (IC50 = 39 and 130 microM, respectively). The structures of the compounds were determined by spectroscopic analysis, primarily two-dimensional NMR, and revealed that phaeochromycins A, B, C, and E were octaketides, elaborated from a C4 starter unit, related to shunt products of the actinorhodin pathway, namely, mutactin, dehydromutactin, SEK34b, and BSM1.

View Article and Find Full Text PDF

The natural product rapamycin, produced during fermentation by Streptomyces hygroscopicus, is known for its potent antifungal, immunosuppressive, and anticancer activities. During rapamycin biosynthesis, the amino acid l-pipecolate is incorporated into the rapamycin molecule. We investigated the use of precursor-directed biosynthesis to create new rapamycin analogs by substitution of unusual l-pipecolate analogs in place of the normal amino acid.

View Article and Find Full Text PDF