Torque teno virus (TTV) is emerging as a potential marker for monitoring immune status. In transplant recipients who are immunosuppressed, higher TTV DNA loads are observed than in healthy individuals. TTV load measurement may aid in optimizing immunosuppressive medication dosing in solid organ transplant recipients.
View Article and Find Full Text PDFTorque Teno Virus (TTV) is a non-pathogenic virus that is highly prevalent among kidney transplant recipients (KTRs). Its circulating load is associated with an immunological status in KTR and is considered a promising tool for guiding immunosuppression. To allow for optimal guidance, it is important to identify other determinants of TTV load.
View Article and Find Full Text PDFTorquetenovirus (TTV), a small, single stranded anellovirus, is currently being explored as a marker of immunocompetence in patients with immunological impairment and inflammatory disorders. TTV has an extremely high prevalence and is regarded as a part of the human virome, the replication of which is controlled by a functioning immune system. The viral load of TTV in plasma of individuals is thought to reflect the degree of immunosuppression.
View Article and Find Full Text PDFBackground: Serological responses to COVID-19 vaccination are diminished in recipients of solid organ transplants, especially in lung transplant recipients (LTR), probably as result of immunosuppressive treatment. There is currently no marker of immunosuppression that can be used to predict the COVID-19 vaccination response. Here, we study whether torque tenovirus (TTV), a highly prevalent virus can be used as an indicator of immunosuppression.
View Article and Find Full Text PDFFollowing transplantation, patients must take immunosuppressive medication for life. Torquetenovirus (TTV) is thought to be marker for immunosuppression, and TTV-DNA levels after organ transplantation have been investigated, showing high TTV levels, associated with increased risk of infections, and low TTV levels associated with increased risk of rejection. However, this has been investigated in studies with relatively short follow-up periods.
View Article and Find Full Text PDFBackground: DNA methylation variability regions (MVRs) across the oestrogen receptor alpha (ESR1) gene have been identified in peripheral blood cells from breast cancer patients and healthy individuals. In contrast to promoter methylation, gene body methylation may be important in maintaining active transcription. This study aimed to assess MVRs in ESR1 in breast cancer cell lines, tumour biopsies and exfoliated epithelial cells from expressed breast milk (EBM), to determine their significance for ESR1 transcription.
View Article and Find Full Text PDF